Suppr超能文献

适用领域对生成式人工智能的影响。

Impact of Applicability Domains to Generative Artificial Intelligence.

作者信息

Langevin Maxime, Grebner Christoph, Güssregen Stefan, Sauer Susanne, Li Yi, Matter Hans, Bianciotto Marc

机构信息

PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.

Molecular Design Sciences-Integrated Drug Discovery, R&D, Sanofi, 94400 Vitry-sur-Seine, France.

出版信息

ACS Omega. 2023 Jun 12;8(25):23148-23167. doi: 10.1021/acsomega.3c00883. eCollection 2023 Jun 27.

Abstract

Molecular generative artificial intelligence is drawing significant attention in the drug design community, with several experimentally validated proof of concepts already published. Nevertheless, generative models are known for sometimes generating unrealistic, unstable, unsynthesizable, or uninteresting structures. This calls for methods to constrain those algorithms to generate structures in drug-like portions of the chemical space. While the concept of applicability domains for predictive models is well studied, its counterpart for generative models is not yet well-defined. In this work, we empirically examine various possibilities and propose applicability domains suited for generative models. Using both public and internal data sets, we use generative methods to generate novel structures that are predicted to be actives by a corresponding quantitative structure-activity relationships model while constraining the generative model to stay within a given applicability domain. Our work looks at several applicability domain definitions, combining various criteria, such as structural similarity to the training set, similarity of physicochemical properties, unwanted substructures, and quantitative estimate of drug-likeness. We assess the structures generated from both qualitative and quantitative points of view and find that the applicability domain definitions have a strong influence on the drug-likeness of generated molecules. An extensive analysis of our results allows us to identify applicability domain definitions that are best suited for generating drug-like molecules with generative models. We anticipate that this work will help foster the adoption of generative models in an industrial context.

摘要

分子生成式人工智能在药物设计领域正引起广泛关注,已有多篇经过实验验证的概念验证文章发表。然而,生成模型有时会生成不现实、不稳定、无法合成或无趣的结构。这就需要一些方法来约束这些算法,使其在化学空间中类似药物的区域生成结构。虽然预测模型的适用域概念已得到充分研究,但其在生成模型中的对应概念尚未得到很好的定义。在这项工作中,我们通过实证研究各种可能性,并提出适用于生成模型的适用域。我们使用公开数据集和内部数据集,利用生成方法生成新颖的结构,这些结构通过相应的定量构效关系模型预测为活性结构,同时约束生成模型保持在给定的适用域内。我们的工作研究了几种适用域定义,结合了各种标准,如与训练集的结构相似性、物理化学性质的相似性、不需要的子结构以及类药性的定量估计。我们从定性和定量的角度评估生成的结构,发现适用域定义对生成分子的类药性有很大影响。对我们的结果进行广泛分析后,我们能够确定最适合用生成模型生成类药分子的适用域定义。我们预计这项工作将有助于推动生成模型在工业环境中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb6/10308412/b660eed722b7/ao3c00883_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验