Suppr超能文献

基于机器学习的拉曼光谱法自动识别个体纳米塑料。

Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning.

机构信息

Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China.

出版信息

Environ Sci Technol. 2023 Nov 21;57(46):18203-18214. doi: 10.1021/acs.est.3c03210. Epub 2023 Jul 3.

Abstract

The increasing prevalence of nanoplastics in the environment underscores the need for effective detection and monitoring techniques. Current methods mainly focus on microplastics, while accurate identification of nanoplastics is challenging due to their small size and complex composition. In this work, we combined highly reflective substrates and machine learning to accurately identify nanoplastics using Raman spectroscopy. Our approach established Raman spectroscopy data sets of nanoplastics, incorporated peak extraction and retention data processing, and constructed a random forest model that achieved an average accuracy of 98.8% in identifying nanoplastics. We validated our method with tap water spiked samples, achieving over 97% identification accuracy, and demonstrated the applicability of our algorithm to real-world environmental samples through experiments on rainwater, detecting nanoscale polystyrene (PS) and polyvinyl chloride (PVC). Despite the challenges of processing low-quality nanoplastic Raman spectra and complex environmental samples, our study demonstrated the potential of using random forests to identify and distinguish nanoplastics from other environmental particles. Our results suggest that the combination of Raman spectroscopy and machine learning holds promise for developing effective nanoplastic particle detection and monitoring strategies.

摘要

纳米塑料在环境中的日益普及凸显了对有效检测和监测技术的需求。目前的方法主要集中于微塑料,而由于纳米塑料体积小且组成复杂,因此准确识别纳米塑料具有挑战性。在这项工作中,我们结合高反射衬底和机器学习,使用拉曼光谱法准确识别纳米塑料。我们的方法建立了纳米塑料的拉曼光谱数据集,包括峰提取和保留数据处理,并构建了一个随机森林模型,该模型在识别纳米塑料方面的平均准确率达到 98.8%。我们通过对自来水加标样品进行验证,实现了超过 97%的识别准确率,并通过对雨水进行实验,证明了我们的算法在实际环境样品中的适用性,检测到了纳米级聚苯乙烯(PS)和聚氯乙烯(PVC)。尽管处理低质量纳米塑料拉曼光谱和复杂环境样品存在挑战,但我们的研究表明,使用随机森林识别和区分纳米塑料与其他环境颗粒具有潜力。我们的结果表明,拉曼光谱和机器学习的结合有望开发有效的纳米塑料颗粒检测和监测策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验