Suppr超能文献

scFED:基于特征工程去噪的单细胞RNA测序数据聚类识别细胞类型

scFED: Clustering Identifying Cell Types of scRNA-Seq Data Based on Feature Engineering Denoising.

作者信息

Liu Yang, Li Feng, Shang Junliang, Liu Jinxing, Wang Juan, Ge Daohui

机构信息

School of Computer Science, Qufu Normal University, Rizhao, 276826, China.

出版信息

Interdiscip Sci. 2023 Dec;15(4):590-601. doi: 10.1007/s12539-023-00574-y. Epub 2023 Jul 4.

Abstract

Recently developed single-cell RNA-seq (scRNA-seq) technology has given researchers the chance to investigate single-cell level of disease development. Clustering is one of the most essential strategies for analyzing scRNA-seq data. Choosing high-quality feature sets can significantly enhance the outcomes of single-cell clustering and classification. But computationally burdensome and highly expressed genes cannot afford a stabilized and predictive feature set for technical reasons. In this study, we introduce scFED, a feature-engineered gene selection framework. scFED identifies prospective feature sets to eliminate the noise fluctuation. And fuse them with existing knowledge from the tissue-specific cellular taxonomy reference database (CellMatch) to avoid the influence of subjective factors. Then present a reconstruction approach for noise reduction and crucial information amplification. We apply scFED on four genuine single-cell datasets and compare it with other techniques. According to the results, scFED improves clustering, decreases dimension of the scRNA-seq data, improves cell type identification when combined with clustering algorithms, and has higher performance than other methods. Therefore, scFED offers certain benefits in scRNA-seq data gene selection.

摘要

最近开发的单细胞RNA测序(scRNA-seq)技术让研究人员有机会在单细胞水平上研究疾病发展。聚类是分析scRNA-seq数据的最基本策略之一。选择高质量的特征集可以显著提高单细胞聚类和分类的结果。但由于技术原因,计算量大且高表达的基因无法提供稳定且具有预测性的特征集。在本研究中,我们引入了scFED,这是一种经过特征工程处理的基因选择框架。scFED识别潜在的特征集以消除噪声波动。并将它们与来自组织特异性细胞分类参考数据库(CellMatch)的现有知识融合,以避免主观因素的影响。然后提出一种用于降噪和关键信息放大的重建方法。我们将scFED应用于四个真实的单细胞数据集,并与其他技术进行比较。根据结果,scFED改善了聚类,降低了scRNA-seq数据的维度,与聚类算法结合时提高了细胞类型识别能力,并且比其他方法具有更高的性能。因此,scFED在scRNA-seq数据基因选择方面具有一定优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验