Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico.
Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
Theory Biosci. 2023 Sep;142(3):211-219. doi: 10.1007/s12064-023-00394-0. Epub 2023 Jul 5.
In this work, we formulate the following question: How the distribution of aminoacyl-tRNA synthetases (aaRSs) went from an ancestral bidirectional gene (mirror symmetry) to the symmetrical distribution of aaRSs in a six-dimensional hypercube of the Standard Genetic Code (SGC)? We assume a primeval RNY code, two Extended Genetic RNA codes type 1 and 2, and the SGC. We outline the types of symmetries of the distribution of aaRSs in each code. The symmetry groups of aaRSs in each code are described, until the symmetries of the SGC display a mirror symmetry. Considering both Extended RNA codes the 20 aaRSs were already present before the Last Universal Ancestor. These findings reveal intricacies in the diversification of aaRSs accompanied by the evolution of the genetic code.
在这项工作中,我们提出了以下问题:氨酰-tRNA 合成酶 (aaRS) 的分布如何从原始的双向基因(镜像对称)演变为标准遗传密码 (SGC) 的六维超立方体中的 aaRS 对称分布?我们假设原始的 RNY 密码、两种类型 1 和 2 的扩展遗传 RNA 密码以及 SGC。我们概述了每种密码中 aaRS 分布的对称类型。描述了每种密码中 aaRS 的对称群,直到 SGC 的对称性显示镜像对称。考虑到这两种扩展 RNA 密码,在最后一个共同祖先之前,已经存在 20 种 aaRS。这些发现揭示了 aaRS 多样化伴随着遗传密码进化的复杂性。