Suppr超能文献

免疫代谢协同进化定义了 ccRCC 中独特的微环境生态位。

Immunometabolic coevolution defines unique microenvironmental niches in ccRCC.

机构信息

Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.

Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.

出版信息

Cell Metab. 2023 Aug 8;35(8):1424-1440.e5. doi: 10.1016/j.cmet.2023.06.005. Epub 2023 Jul 5.

Abstract

Tumor cell phenotypes and anti-tumor immune responses are shaped by local metabolite availability, but intratumoral metabolite heterogeneity (IMH) and its phenotypic consequences remain poorly understood. To study IMH, we profiled tumor/normal regions from clear cell renal cell carcinoma (ccRCC) patients. A common pattern of IMH transcended all patients, characterized by correlated fluctuations in the abundance of metabolites and processes associated with ferroptosis. Analysis of intratumoral metabolite-RNA covariation revealed that the immune composition of the microenvironment, especially the abundance of myeloid cells, drove intratumoral metabolite variation. Motivated by the strength of RNA-metabolite covariation and the clinical significance of RNA biomarkers in ccRCC, we inferred metabolomic profiles from the RNA sequencing data of ccRCC patients enrolled in 7 clinical trials, and we ultimately identifyied metabolite biomarkers associated with response to anti-angiogenic agents. Local metabolic phenotypes, therefore, emerge in tandem with the immune microenvironment, influence ongoing tumor evolution, and are associated with therapeutic sensitivity.

摘要

肿瘤细胞表型和抗肿瘤免疫反应受局部代谢物可用性的影响,但肿瘤内代谢物异质性(IMH)及其表型后果仍知之甚少。为了研究 IMH,我们对透明细胞肾细胞癌(ccRCC)患者的肿瘤/正常区域进行了分析。一种常见的 IMH 模式超越了所有患者,其特征是与铁死亡相关的代谢物丰度和相关过程的相关性波动。对肿瘤内代谢物-RNA 共变的分析表明,微环境的免疫组成,特别是髓样细胞的丰度,驱动了肿瘤内代谢物的变化。受 RNA-代谢物共变强度和 RNA 生物标志物在 ccRCC 中临床意义的启发,我们从 7 项临床试验中纳入的 ccRCC 患者的 RNA 测序数据中推断出代谢组学图谱,最终确定了与抗血管生成药物反应相关的代谢物生物标志物。因此,局部代谢表型与免疫微环境同时出现,影响肿瘤的持续进化,并与治疗敏感性相关。

相似文献

1
Immunometabolic coevolution defines unique microenvironmental niches in ccRCC.
Cell Metab. 2023 Aug 8;35(8):1424-1440.e5. doi: 10.1016/j.cmet.2023.06.005. Epub 2023 Jul 5.
10
Intratumoral fibrosis and patterns of immune infiltration in clear cell renal cell carcinoma.
BMC Cancer. 2022 Jun 16;22(1):661. doi: 10.1186/s12885-022-09765-0.

引用本文的文献

5
Overexpression of PLCG2 and TMEM38A inhibit tumor progression in clear cell renal cell carcinoma.
Sci Rep. 2025 Jan 25;15(1):3192. doi: 10.1038/s41598-025-86644-1.
6
: Integrative Module Analysis for Multi-omics Data.
bioRxiv. 2024 Dec 17:2024.11.12.623208. doi: 10.1101/2024.11.12.623208.
8
STAC3 as a poor prognostic biomarker in renal clear cell carcinoma: relationship with immune infiltration.
Am J Cancer Res. 2024 Jul 15;14(7):3294-3316. doi: 10.62347/EAQW3113. eCollection 2024.
10
UnitedMet harnesses RNA-metabolite covariation to impute metabolite levels in clinical samples.
medRxiv. 2024 Nov 21:2024.05.24.24307903. doi: 10.1101/2024.05.24.24307903.

本文引用的文献

1
Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness.
Cancer Cell. 2023 Jan 9;41(1):139-163.e17. doi: 10.1016/j.ccell.2022.12.001. Epub 2022 Dec 22.
3
MIRTH: Metabolite Imputation via Rank-Transformation and Harmonization.
Genome Biol. 2022 Sep 1;23(1):184. doi: 10.1186/s13059-022-02738-3.
4
5
A Targetable Myeloid Inflammatory State Governs Disease Recurrence in Clear-Cell Renal Cell Carcinoma.
Cancer Discov. 2022 Oct 5;12(10):2308-2329. doi: 10.1158/2159-8290.CD-21-0925.
6
PHGDH heterogeneity potentiates cancer cell dissemination and metastasis.
Nature. 2022 May;605(7911):747-753. doi: 10.1038/s41586-022-04758-2. Epub 2022 May 18.
7
Spatially resolved isotope tracing reveals tissue metabolic activity.
Nat Methods. 2022 Feb;19(2):223-230. doi: 10.1038/s41592-021-01378-y. Epub 2022 Feb 7.
8
Cell-programmed nutrient partitioning in the tumour microenvironment.
Nature. 2021 May;593(7858):282-288. doi: 10.1038/s41586-021-03442-1. Epub 2021 Apr 7.
9
Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma.
N Engl J Med. 2021 Mar 4;384(9):829-841. doi: 10.1056/NEJMoa2026982.
10
CTLA-4 blockade drives loss of T stability in glycolysis-low tumours.
Nature. 2021 Mar;591(7851):652-658. doi: 10.1038/s41586-021-03326-4. Epub 2021 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验