Suppr超能文献

一种基于模型的方法,用于从表观协同性中检索内在协同性,并预测三元复合物形成化合物的细胞靶点占有率。

A model-informed method to retrieve intrinsic from apparent cooperativity and project cellular target occupancy for ternary complex-forming compounds.

作者信息

Stein Richard R, Fouché Marianne, Kearns Jeffrey D, Roth Hans-Joerg

机构信息

Novartis Institutes for BioMedical Research Basel Switzerland

Novartis Institutes for BioMedical Research Cambridge MA USA.

出版信息

RSC Chem Biol. 2023 May 19;4(7):512-523. doi: 10.1039/d2cb00216g. eCollection 2023 Jul 5.

Abstract

There is an increasing interest to develop therapeutics that modulate challenging or undruggable target proteins a mechanism that involves ternary complexes. In general, such compounds can be characterized by their direct affinities to a chaperone and a target protein and by their degree of cooperativity in the formation of the ternary complex. As a trend, smaller compounds have a greater dependency on intrinsic cooperativity to their thermodynamic stability relative to direct target (or chaperone) binding. This highlights the need to consider intrinsic cooperativity of ternary complex-forming compounds early in lead optimization, especially as they provide more control over target selectivity (especially for isoforms) and more insight into the relationship between target occupancy and target response estimation of ternary complex concentrations. This motivates the need to quantify the natural constant of intrinsic cooperativity () which is generally defined as the gain (or loss) in affinity of a compound to its target in pre-bound unbound state. Intrinsic cooperativities can be retrieved a mathematical binding model from EC shifts of binary binding curves of the ternary complex-forming compound with either a target or chaperone relative to the same experiment but in the presence of the counter protein. In this manuscript, we present a mathematical modeling methodology that estimates the intrinsic cooperativity value from experimentally observed apparent cooperativities. This method requires only the two binary binding affinities and the protein concentrations of target and chaperone and is therefore suitable for use in early discovery therapeutic programs. This approach is then extended from biochemical assays to cellular assays (, from a closed system to an open system) by accounting for differences in total ligand free ligand concentrations in the calculations of ternary complex concentrations. Finally, this model is used to translate biochemical potency of ternary complex-forming compounds into expected cellular target occupancy, which could ultimately serve as a way for validation or de-validation of hypothesized biological mechanisms of action.

摘要

开发能够调节具有挑战性或难以成药的靶蛋白的疗法(一种涉及三元复合物的机制)正受到越来越多的关注。一般来说,这类化合物的特征在于它们与伴侣蛋白和靶蛋白的直接亲和力,以及它们在三元复合物形成过程中的协同程度。通常,较小的化合物相对于直接与靶标(或伴侣蛋白)结合而言,对其热力学稳定性的内在协同性有更大的依赖性。这凸显了在先导化合物优化早期就需要考虑形成三元复合物的化合物的内在协同性,特别是因为它们能对靶标选择性(尤其是对同工型)提供更多控制,并且能更深入了解靶标占有率与靶标反应(三元复合物浓度的估计)之间的关系。这就促使需要量化内在协同性的自然常数(),其通常被定义为化合物在预结合(未结合)状态下对其靶标的亲和力增益(或损失)。内在协同性可以通过三元复合物形成化合物与靶标或伴侣蛋白的二元结合曲线的EC位移,从一个数学结合模型中获取,该模型相对于相同实验,但在存在反向蛋白的情况下。在本手稿中,我们提出了一种数学建模方法,可从实验观察到的表观协同性估计内在协同性值。该方法仅需要两个二元结合亲和力以及靶标和伴侣蛋白的蛋白质浓度,因此适用于早期发现治疗方案。然后,通过在三元复合物浓度的计算中考虑总配体与游离配体浓度的差异,将该方法从生化分析扩展到细胞分析(即从封闭系统扩展到开放系统)。最后,该模型用于将形成三元复合物的化合物的生化效力转化为预期的细胞靶标占有率,这最终可作为一种验证或否定假设的生物学作用机制的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ce3/10320841/933dc6efc690/d2cb00216g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验