Suppr超能文献

体外重建蓝藻生物钟的方案。

Protocols for in vitro reconstitution of the cyanobacterial circadian clock.

机构信息

Center for Circadian Biology, University of California - San Diego, La Jolla, California, USA.

School of Natural Sciences, University of California - Merced, Merced, California, USA.

出版信息

Biopolymers. 2024 Mar;115(2):e23559. doi: 10.1002/bip.23559. Epub 2023 Jul 8.

Abstract

Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells. Recently, we reconstituted the intact circadian clock of cyanobacteria in vitro. It oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of individual clock proteins and promoter DNA simultaneously under defined conditions without user intervention. We found that reproducibility of the reactions required strict adherence to the quality of each recombinant clock protein purified from Escherichia coli. Here, we provide protocols for preparing in vitro clock samples so that other labs can ask questions about how changing environments, like temperature, metabolites, and protein levels are reflected in the core oscillator and propagated to regulation of transcription, providing deeper mechanistic insights into clock biology.

摘要

生物钟是细胞内系统,通过提供当地时间的内部表示,为日出和日落做好代谢过程的准备。由于它们产生的约 24 小时代谢节律对不同生命形式的健康都很重要,因此人们对其机制越来越感兴趣。然而,由于活细胞的复杂环境(即定义不明确),体内的机制研究具有挑战性。最近,我们在体外重新构建了蓝藻完整的生物钟。它可以自主振荡,并在基于荧光的读出下保持多天的相位相干性,该读出可以在没有用户干预的情况下实时观察单个时钟蛋白和启动子 DNA,同时在定义的条件下进行。我们发现,为了使反应具有重现性,需要严格遵守从大肠杆菌中纯化出的每个重组时钟蛋白的质量。在这里,我们提供了体外时钟样本的制备方案,以便其他实验室可以询问有关环境变化(如温度、代谢物和蛋白质水平)如何反映在核心振荡器中,并传播到转录调控的问题,从而深入了解生物钟生物学的机制。

相似文献

1
Protocols for in vitro reconstitution of the cyanobacterial circadian clock.
Biopolymers. 2024 Mar;115(2):e23559. doi: 10.1002/bip.23559. Epub 2023 Jul 8.
2
Reconstitution of an intact clock reveals mechanisms of circadian timekeeping.
Science. 2021 Oct 8;374(6564):eabd4453. doi: 10.1126/science.abd4453.
3
Diversity of KaiC-based timing systems in marine Cyanobacteria.
Mar Genomics. 2014 Apr;14:3-16. doi: 10.1016/j.margen.2013.12.006. Epub 2014 Jan 3.
4
Structure, function, and mechanism of the core circadian clock in cyanobacteria.
J Biol Chem. 2018 Apr 6;293(14):5026-5034. doi: 10.1074/jbc.TM117.001433. Epub 2018 Feb 13.
5
The inner workings of an ancient biological clock.
Trends Biochem Sci. 2024 Mar;49(3):236-246. doi: 10.1016/j.tibs.2023.12.007. Epub 2024 Jan 6.
6
[Progress in the molecular mechanism of KaiA regulating cyanobacterial circadian clock].
Sheng Wu Gong Cheng Xue Bao. 2019 May 25;35(5):795-804. doi: 10.13345/j.cjb.190020.
7
, a Key Gene of the Circadian Rhythm of .
Int J Mol Sci. 2022 May 30;23(11):6136. doi: 10.3390/ijms23116136.
8
Mutation of alanine-422 in KaiC leads to a low amplitude of rhythm in the reconstituted cyanobacterial circadian clock.
J Gen Appl Microbiol. 2020 Jun 17;66(2):140-146. doi: 10.2323/jgam.2020.01.008. Epub 2020 Mar 30.
10
The ATP-mediated regulation of KaiB-KaiC interaction in the cyanobacterial circadian clock.
PLoS One. 2013 Nov 11;8(11):e80200. doi: 10.1371/journal.pone.0080200. eCollection 2013.

引用本文的文献

1
Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2412327121. doi: 10.1073/pnas.2412327121. Epub 2024 Dec 13.
2
The inner workings of an ancient biological clock.
Trends Biochem Sci. 2024 Mar;49(3):236-246. doi: 10.1016/j.tibs.2023.12.007. Epub 2024 Jan 6.

本文引用的文献

2
Synchronization of the circadian clock to the environment tracked in real time.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2221453120. doi: 10.1073/pnas.2221453120. Epub 2023 Mar 20.
3
Coupling of distant ATPase domains in the circadian clock protein KaiC.
Nat Struct Mol Biol. 2022 Aug;29(8):759-766. doi: 10.1038/s41594-022-00803-w. Epub 2022 Jul 21.
4
Elucidation of master allostery essential for circadian clock oscillation in cyanobacteria.
Sci Adv. 2022 Apr 15;8(15):eabm8990. doi: 10.1126/sciadv.abm8990.
5
A Night-Time Edge Site Intermediate in the Cyanobacterial Circadian Clock Identified by EPR Spectroscopy.
J Am Chem Soc. 2022 Jan 12;144(1):184-194. doi: 10.1021/jacs.1c08103. Epub 2022 Jan 3.
6
Reconstitution of an intact clock reveals mechanisms of circadian timekeeping.
Science. 2021 Oct 8;374(6564):eabd4453. doi: 10.1126/science.abd4453.
7
The circadian clock ensures successful DNA replication in cyanobacteria.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2022516118.
8
Tuning the circadian period of cyanobacteria up to 6.6 days by the single amino acid substitutions in KaiC.
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20926-20931. doi: 10.1073/pnas.2005496117. Epub 2020 Aug 3.
9
The circadian clock and darkness control natural competence in cyanobacteria.
Nat Commun. 2020 Apr 3;11(1):1688. doi: 10.1038/s41467-020-15384-9.
10
Orchestration of Circadian Timing by Macromolecular Protein Assemblies.
J Mol Biol. 2020 May 29;432(12):3426-3448. doi: 10.1016/j.jmb.2019.12.046. Epub 2020 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验