Suppr超能文献

使用配备预质量检查和汉克尔分解新算法的PPG传感器贴片进行精确心率估计。

Precision Heart Rate Estimation Using a PPG Sensor Patch Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition.

作者信息

Thakur Smriti, Chao Paul C-P, Tsai Cheng-Han

机构信息

Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

出版信息

Sensors (Basel). 2023 Jul 5;23(13):6180. doi: 10.3390/s23136180.

Abstract

A new method for accurately estimating heart rates based on a single photoplethysmography (PPG) signal and accelerations is proposed in this study, considering motion artifacts due to subjects' hand motions and walking. The method comprises two sub-algorithms: pre-quality checking and motion artifact removal (MAR) via Hankel decomposition. PPGs and accelerations were collected using a wearable device equipped with a PPG sensor patch and a 3-axis accelerometer. The motion artifacts caused by hand movements and walking were effectively mitigated by the two aforementioned sub-algorithms. The first sub-algorithm utilized a new quality-assessment criterion to identify highly noise-contaminated PPG signals and exclude them from subsequent processing. The second sub-algorithm employed the Hankel matrix and singular value decomposition (SVD) to effectively identify, decompose, and remove motion artifacts. Experimental data collected during hand-moving and walking were considered for evaluation. The performance of the proposed algorithms was assessed using the datasets from the IEEE Signal Processing Cup 2015. The obtained results demonstrated an average error of merely 0.7345 ± 8.1129 beats per minute (bpm) and a mean absolute error of 1.86 bpm for walking, making it the second most accurate method to date that employs a single PPG and a 3-axis accelerometer. The proposed method also achieved the best accuracy of 3.78 bpm in mean absolute errors among all previously reported studies for hand-moving scenarios.

摘要

本研究提出了一种基于单光电容积脉搏波描记法(PPG)信号和加速度准确估计心率的新方法,该方法考虑了由于受试者手部运动和行走产生的运动伪影。该方法包括两个子算法:预质量检查和通过汉克尔分解去除运动伪影(MAR)。使用配备PPG传感器贴片和三轴加速度计的可穿戴设备收集PPG信号和加速度数据。上述两个子算法有效减轻了由手部运动和行走引起的运动伪影。第一个子算法利用一种新的质量评估标准来识别高噪声污染的PPG信号,并将其排除在后续处理之外。第二个子算法采用汉克尔矩阵和奇异值分解(SVD)来有效识别、分解和去除运动伪影。评估时考虑了在手部运动和行走过程中收集的实验数据。使用来自2015年IEEE信号处理杯的数据集评估了所提出算法的性能。获得的结果表明,对于行走,平均误差仅为0.7345±8.1129次/分钟(bpm),平均绝对误差为1.86 bpm,使其成为迄今为止使用单个PPG和三轴加速度计的第二精确方法。在所报道的所有手部运动场景研究中,所提出的方法在平均绝对误差方面也达到了最佳精度,为3.78 bpm。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3655/10346997/83423cd525c1/sensors-23-06180-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验