Suppr超能文献

人工智能识别病理步态:基于 iOS 应用(TDPT-GT)获取的无标记运动捕捉步态数据的分析。

Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT).

机构信息

Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata 990-2331, Japan.

Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.

出版信息

Sensors (Basel). 2023 Jul 7;23(13):6217. doi: 10.3390/s23136217.

Abstract

Distinguishing pathological gait is challenging in neurology because of the difficulty of capturing total body movement and its analysis. We aimed to obtain a convenient recording with an iPhone and establish an algorithm based on deep learning. From May 2021 to November 2022 at Yamagata University Hospital, Shiga University, and Takahata Town, patients with idiopathic normal pressure hydrocephalus ( = 48), Parkinson's disease ( = 21), and other neuromuscular diseases ( = 45) comprised the pathological gait group ( = 114), and the control group consisted of 160 healthy volunteers. iPhone application TDPT-GT captured the subjects walking in a circular path of about 1 meter in diameter, a markerless motion capture system, with an iPhone camera, which generated the three-axis 30 frames per second (fps) relative coordinates of 27 body points. A light gradient boosting machine (Light GBM) with stratified k-fold cross-validation (k = 5) was applied for gait collection for about 1 min per person. The median ability model tested 200 frames of each person's data for its distinction capability, which resulted in the area under a curve of 0.719. The pathological gait captured by the iPhone could be distinguished by artificial intelligence.

摘要

由于难以捕捉到全身运动及其分析,神经病学中鉴别病理性步态具有挑战性。我们旨在通过 iPhone 获得便捷的记录,并建立基于深度学习的算法。2021 年 5 月至 2022 年 11 月,在山形大学医院、滋贺医科大学和高田镇,特发性正常压力脑积水患者(=48 例)、帕金森病患者(=21 例)和其他神经肌肉疾病患者(=45 例)组成病理性步态组(=114 例),对照组由 160 名健康志愿者组成。iPhone 应用程序 TDPT-GT 以约 1 米直径的圆形路径捕获受试者行走,使用无标记运动捕捉系统和 iPhone 摄像头,生成 27 个身体点的每秒 30 帧(fps)的三轴相对坐标。使用分层 k 折交叉验证(k=5)的轻梯度提升机(Light GBM)用于约每人 1 分钟的步态采集。中位数能力模型测试了每个人 200 帧数据的区分能力,曲线下面积为 0.719。通过人工智能可以区分 iPhone 捕获的病理性步态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f825/10346151/807a99b5b3bd/sensors-23-06217-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验