Suppr超能文献

使用 193nm 紫外光光解质谱法区分天冬氨酸和异天冬氨酸。

Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry.

机构信息

Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.

Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States.

出版信息

Anal Chem. 2023 Aug 1;95(30):11510-11517. doi: 10.1021/acs.analchem.3c02025. Epub 2023 Jul 17.

Abstract

Spontaneous conversion of aspartic acid (Asp) to isoaspartic acid (Asp) is a ubiquitous modification that influences the structure and function of proteins. This modification of Asp impacts the stability of biotherapeutics and has been linked to the development of neurodegenerative diseases. We explored the use of 193 nm ultraviolet photodissociation (UVPD) to distinguish Asp and Asp in the protonated and deprotonated peptides. The differences in the relative abundances of several fragment ions uniquely generated by UVPD were used to differentiate isomeric peptide standards containing Asp or Asp. These fragment ions result from the cleavage of bonds N-terminal to Asp/Asp residues in addition to the side-chain losses from Asp/Asp or the losses of COOH, CO, CO, or HO from -ions. Fragmentation of Asp-containing tryptic peptides using UVPD resulted in more enhanced / + 1/ - 1/ ions, while Asp-containing peptides yielded more enhanced - 18/ - 45/ - 46 ions. UVPD was also used to identify an isomerized peptide from a tryptic digest of a monoclonal antibody. Moreover, UVPD of a protonated nontryptic peptide resulted in more enhanced ions N- and C-terminal to Asp and differences in / ion ratios that were used to identify the Asp peptide.

摘要

天冬氨酸(Asp)自发转化为异天冬氨酸(isoAsp)是一种普遍存在的修饰,会影响蛋白质的结构和功能。这种 Asp 的修饰会影响生物治疗药物的稳定性,并与神经退行性疾病的发展有关。我们探索了使用 193nm 紫外光解(UVPD)来区分质子化和去质子化肽中天冬氨酸和异天冬氨酸。通过 UVPD 独特生成的几个片段离子的相对丰度的差异,可用于区分含有 Asp 或 isoAsp 的异构肽标准品。这些片段离子是从天冬氨酸/异天冬氨酸残基 N 端的键断裂产生的,此外还有从天冬氨酸/异天冬氨酸侧链或 - 离子失去 COOH、CO、CO 或 HO 产生的。使用 UVPD 对含有天冬氨酸的胰蛋白酶肽进行片段化,会产生更多增强的 / + 1/ - 1/ 离子,而含有 Asp 的肽则会产生更多增强的 - 18/ - 45/ - 46 离子。UVPD 还用于鉴定单克隆抗体胰蛋白酶消化物中的异构肽。此外,质子化的非胰蛋白酶肽的 UVPD 会导致 Asp 两端的 / 离子增强,并产生 / 离子比的差异,可用于鉴定 Asp 肽。

相似文献

1
Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry.
Anal Chem. 2023 Aug 1;95(30):11510-11517. doi: 10.1021/acs.analchem.3c02025. Epub 2023 Jul 17.
2
Differentiating N-terminal aspartic and isoaspartic acid residues in peptides.
Anal Chem. 2011 Sep 1;83(17):6675-82. doi: 10.1021/ac201223d. Epub 2011 Aug 1.
3
Unequivocal Identification of Aspartic Acid and Aspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody.
J Am Soc Mass Spectrom. 2021 Aug 4;32(8):1901-1909. doi: 10.1021/jasms.0c00370. Epub 2021 Jan 3.
4
Discrimination of Aspartic and Isoaspartic Acid Residues in Peptides by Tandem Mass Spectrometry with Hydrogen Attachment Dissociation.
Anal Chem. 2024 May 28;96(21):8552-8559. doi: 10.1021/acs.analchem.4c00561. Epub 2024 May 13.
5
Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry.
Protein Sci. 2000 Nov;9(11):2260-8. doi: 10.1110/ps.9.11.2260.
6
Interconversion of the peptide isoforms of aspartate: stability of isoaspartates.
Mech Ageing Dev. 2013 Mar;134(3-4):103-9. doi: 10.1016/j.mad.2013.01.002. Epub 2013 Feb 4.
8
Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods.
J Am Soc Mass Spectrom. 2016 Dec;27(12):2041-2053. doi: 10.1007/s13361-016-1487-9. Epub 2016 Sep 9.
9
Identification of Asp isomerization in proteins by ¹⁸O labeling and tandem mass spectrometry.
Methods Mol Biol. 2012;899:365-77. doi: 10.1007/978-1-61779-921-1_23.
10
A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues.
Amino Acids. 2013 Apr;44(4):1205-14. doi: 10.1007/s00726-012-1454-0. Epub 2013 Jan 24.

引用本文的文献

1
Untargeted Discovery and Localization of Isomerized Residues in Neuropeptides.
Anal Chem. 2025 Aug 19;97(32):17570-17579. doi: 10.1021/acs.analchem.5c02612. Epub 2025 Aug 7.
2
High-Throughput Monoclonal Antibody Peptide Mapping Using 15-s HPLC Gradients Coupled with Cyclic Ion Mobility-Mass Spectrometry.
Anal Chem. 2025 Aug 12;97(31):16742-16750. doi: 10.1021/acs.analchem.5c00741. Epub 2025 Aug 1.
4
Deuterium Labeling of Isoaspartic and Isoglutamic Acids for Mass Spectrometry Analysis.
Anal Chem. 2024 Feb 20;96(7):3077-3086. doi: 10.1021/acs.analchem.3c05194. Epub 2024 Feb 12.

本文引用的文献

1
Statistical Framework for Identifying Differences in Similar Mass Spectra: Expanding Possibilities for Isomer Identification.
Anal Chem. 2023 May 2;95(17):6996-7005. doi: 10.1021/acs.analchem.3c00495. Epub 2023 Apr 17.
3
Toward Rapid Aspartic Acid Isomer Localization in Therapeutic Peptides Using Cyclic Ion Mobility Mass Spectrometry.
J Am Soc Mass Spectrom. 2022 Jul 6;33(7):1204-1212. doi: 10.1021/jasms.2c00053. Epub 2022 May 24.
5
Unequivocal Identification of Aspartic Acid and Aspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody.
J Am Soc Mass Spectrom. 2021 Aug 4;32(8):1901-1909. doi: 10.1021/jasms.0c00370. Epub 2021 Jan 3.
6
Differentiation of peptide isomers and epimers by radical-directed dissociation.
Methods Enzymol. 2019;626:67-87. doi: 10.1016/bs.mie.2019.06.020. Epub 2019 Jul 29.
8
Gas Phase Ion Chemistry to Determine Isoaspartate in a Peptide Backbone.
J Am Soc Mass Spectrom. 2018 Jul;29(7):1339-1344. doi: 10.1007/s13361-018-1923-0. Epub 2018 Mar 15.
10
Top-Down Characterization of Heavily Modified Histones Using 193 nm Ultraviolet Photodissociation Mass Spectrometry.
J Proteome Res. 2018 Mar 2;17(3):1138-1145. doi: 10.1021/acs.jproteome.7b00801. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验