School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China.
School of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, China.
J Chem Inf Model. 2024 Apr 8;64(7):2158-2173. doi: 10.1021/acs.jcim.3c00582. Epub 2023 Jul 17.
Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
药物-药物相互作用(DDI)是药物研究的一个关键方面,可能对患者产生不良影响,并导致严重后果。准确预测这些事件可以显著提高临床医生做出更好决策和建立最佳治疗方案的能力。然而,手动检测这些相互作用既耗时又费力。利用人工智能(AI)的进步对于准确预测 DDI 至关重要。在这篇综述中,根据 DDI 预测的类型,将 DDI 预测任务分为三类:无向 DDI 预测、DDI 事件预测和不对称 DDI 预测。然后,本文回顾了 AI 在这三个预测任务中的进展,并对用于这三个预测方向的数据集中使用的代表性方法进行了总结。在这篇综述中,我们旨在提供药物相互作用预测的全面概述。第一节介绍了常用的数据库,并概述了当前在 DDI 的三个领域的研究进展和技术。此外,我们还介绍了用于预测无向药物相互作用的经典机器学习技术,并提供了预测药物相互作用事件的进展时间表。最后,我们讨论了 AI 方法在预测 DDI 方面的困难和前景,强调了它们在改善临床决策和患者结果方面的潜力。