Department of Radiology, Artificial Intelligence and Data Analytic Laboratory, University of California, San Diego, La Jolla, CA.
Department of Radiology, Liver Imaging Group, University of California, San Diego, La Jolla, CA.
AJR Am J Roentgenol. 2023 Nov;221(5):620-631. doi: 10.2214/AJR.23.29607. Epub 2023 Jul 19.
The confounder-corrected chemical shift-encoded MRI (CSE-MRI) sequence used to determine proton density fat fraction (PDFF) for hepatic fat quantification is not widely available. As an alternative, hepatic fat can be assessed by a two-point Dixon method to calculate signal fat fraction (FF) from conventional T1-weighted in- and opposed-phase (IOP) images, although signal FF is prone to biases, leading to inaccurate quantification. The purpose of this study was to compare hepatic fat quantification by use of PDFF inferred from conventional T1-weighted IOP images and deep-learning convolutional neural networks (CNNs) with quantification by use of two-point Dixon signal FF with CSE-MRI PDFF as the reference standard. This study entailed retrospective analysis of data from 292 participants (203 women, 89 men; mean age, 53.7 ± 12.0 [SD] years) enrolled at two sites from September 1, 2017, to December 18, 2019, in the Strong Heart Family Study (a prospective population-based study of American Indian communities). Participants underwent liver MRI (site A, 3 T; site B, 1.5 T) including T1-weighted IOP MRI and CSE-MRI (used to reconstruct CSE PDFF and CSE R2* maps). With CSE PDFF as reference, a CNN was trained in a random sample of 218 (75%) participants to infer voxel-by-voxel PDFF maps from T1-weighted IOP images; testing was performed in the other 74 (25%) participants. Parametric values from the entire liver were automatically extracted. Per-participant median CNN-inferred PDFF and median two-point Dixon signal FF were compared with reference median CSE-MRI PDFF by means of linear regression analysis, intraclass correlation coefficient (ICC), and Bland-Altman analysis. The code is publicly available at github.com/kang927/CNN-inference-of-PDFF-from-T1w-IOP-MR. In the 74 test-set participants, reference CSE PDFF ranged from 1% to 32% (mean, 11.3% ± 8.3% [SD]); reference CSE R2* ranged from 31 to 457 seconds (mean, 62.4 ± 67.3 seconds [SD]). Agreement metrics with reference to CSE PDFF for CNN-inferred PDFF were ICC = 0.99, bias = -0.19%, 95% limits of agreement (LoA) = (-2.80%, 2.71%) and for two-point Dixon signal FF were ICC = 0.93, bias = -1.11%, LoA = (-7.54%, 5.33%). Agreement with reference CSE PDFF was better for CNN-inferred PDFF from conventional T1-weighted IOP images than for two-point Dixon signal FF. Further investigation is needed in individuals with moderate-to-severe iron overload. Measurement of CNN-inferred PDFF from widely available T1-weighted IOP images may facilitate adoption of hepatic PDFF as a quantitative bio-marker for liver fat assessment, expanding opportunities to screen for hepatic steatosis and nonalcoholic fatty liver disease.
用于确定肝脂肪定量质子密度脂肪分数 (PDFF) 的校正混杂化学位移编码 MRI (CSE-MRI) 序列并不广泛可用。作为替代方法,可以通过两点 Dixon 方法评估肝脂肪,从常规 T1 加权的同相 (in-phase, IN) 和反相 (opposed-phase, OUT) 图像计算信号脂肪分数 (FF),尽管信号 FF 容易出现偏差,导致定量不准确。本研究的目的是比较使用常规 T1 加权 IN/OUT 图像的两点 Dixon 信号 FF 和使用 CSE-MRI PDFF 的基于深度学习卷积神经网络 (CNN) 推断的 PDFF 对肝脂肪的定量,并将两者与 CSE-MRI PDFF 作为参考标准。这项研究是对 2017 年 9 月 1 日至 2019 年 12 月 18 日在 Strong Heart 家族研究(一项针对美国印第安人社区的前瞻性人群为基础的研究)的两个地点(3T 场强:地点 A;1.5T 场强:地点 B)招募的 292 名参与者(203 名女性,89 名男性;平均年龄 53.7 ± 12.0 [标准差] 岁)的数据进行的回顾性分析。参与者接受了肝脏 MRI(地点 A,3T;地点 B,1.5T)检查,包括 T1 加权 IN/OUT MRI 和 CSE-MRI(用于重建 CSE PDFF 和 CSE R2* 图)。以 CSE PDFF 为参考,在 218 名(75%)参与者的随机样本中训练了一个 CNN,以便从 T1 加权 IN/OUT 图像推断体素内 PDFF 图;在其余 74 名(25%)参与者中进行测试。自动从整个肝脏中提取参数值。通过线性回归分析、组内相关系数 (ICC) 和 Bland-Altman 分析,比较了参与者中位数 CNN 推断的 PDFF 和中位数两点 Dixon 信号 FF 与参考中位数 CSE-MRI PDFF。代码可在 github.com/kang927/CNN-inference-of-PDFF-from-T1w-IOP-MR 上公开获取。在 74 名测试集参与者中,参考 CSE PDFF 范围为 1%至 32%(平均值 11.3% ± 8.3% [标准差]);参考 CSE R2* 范围为 31 至 457 秒(平均值 62.4 ± 67.3 秒 [标准差])。与 CSE PDFF 相比,CNN 推断的 PDFF 的一致性指标 ICC = 0.99,偏差 = -0.19%,95%一致性界限 (LoA) = (-2.80%,2.71%),两点 Dixon 信号 FF 的 ICC = 0.93,偏差 = -1.11%,LoA = (-7.54%,5.33%)。与两点 Dixon 信号 FF 相比,基于常规 T1 加权 IN/OUT 图像的 CNN 推断的 PDFF 与参考 CSE PDFF 的一致性更好。在中重度铁过载的个体中需要进一步研究。从广泛可用的 T1 加权 IN/OUT 图像中测量 CNN 推断的 PDFF 可能有助于采用肝 PDFF 作为肝脂肪定量的生物标志物,扩大筛查肝脂肪变性和非酒精性脂肪性肝病的机会。