Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
Dev Cell. 2023 Aug 7;58(15):1333-1349. doi: 10.1016/j.devcel.2023.06.013. Epub 2023 Jul 24.
The borders between cell and developmental biology, which have always been permeable, have largely dissolved. One manifestation is the blossoming of cilia biology, with cell and developmental approaches (increasingly complemented by human genetics, structural insights, and computational analysis) fruitfully advancing understanding of this fascinating, multifunctional organelle. The last eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample opportunity to adapt cilia to many jobs. Over the last decades, we have learned how non-motile, primary cilia play important roles in intercellular communication. Reflecting their diverse motility and signaling functions, compromised cilia cause a diverse range of diseases collectively called "ciliopathies." In this review, we highlight how cilia signal, focusing on how second messengers generated in cilia convey distinct information; how cilia are a potential source of signals to other cells; how evolution may have shaped ciliary function; and how cilia research may address thorny outstanding questions.
细胞生物学和发育生物学之间的界限一直是相互渗透的,现在已经基本消失。其中一个表现是纤毛生物学的蓬勃发展,细胞和发育方法(越来越多地辅以人类遗传学、结构见解和计算分析)成功地加深了对这个迷人的多功能细胞器的理解。最后一个真核生物的共同祖先可能拥有一个能动的纤毛,为进化提供了充足的机会使纤毛适应许多工作。在过去的几十年里,我们已经了解了非能动的、初级纤毛在细胞间通讯中发挥的重要作用。反映出它们多样的运动和信号功能,纤毛功能障碍会导致一系列被称为“纤毛病”的疾病。在这篇综述中,我们强调了纤毛信号的方式,重点介绍了在纤毛中产生的第二信使如何传递不同的信息;纤毛如何成为向其他细胞传递信号的潜在来源;进化可能如何塑造纤毛功能;以及纤毛研究如何解决棘手的悬而未决的问题。