Suppr超能文献

基于高效CRISPR-Cas9和Cre系统的代谢工程生产L-苹果酸

Production of L-Malic Acid by Metabolically Engineered Based on Efficient CRISPR-Cas9 and Cre- Systems.

作者信息

Chen Ziqing, Zhang Chi, Pei Lingling, Qian Qi, Lu Ling

机构信息

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.

出版信息

J Fungi (Basel). 2023 Jun 30;9(7):719. doi: 10.3390/jof9070719.

Abstract

has been more extensively characterized than other species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural conditions, is a promising microbial cell factory to biosynthesize various products in industry. However, it remains unclear for whether it is also a suitable host for synthesizing abundant L-malic acid. In this study, we developed a convenient and efficient double-gene-editing system in strain TN02A7 based on the CRISPR-Cas9 and Cre- systems. Using this gene-editing system, we made a L-malic acid-producing strain, ZQ07, derived from TN02A7, by deleting or overexpressing five genes (encoding Pyc, pyruvate carboxylase; OahA, oxaloacetate acetylhydrolase; MdhC, malate dehydrogenase; DctA, C4-dicarboxylic acid transporter; and CexA, citric acid transporter). The L-malic acid yield in ZQ07 increased to approximately 9.6 times higher (up to 30.7 g/L titer) than that of the original unedited strain TN02A7, in which the production of L-malic acid was originally very low. The findings in this study not only demonstrate that could be used as a potential host for biosynthesizing organic acids, but also provide a highly efficient gene-editing strategy in filamentous fungi.

摘要

与其他物种相比,考虑到其形态、生理、代谢途径和遗传调控,[该物种名称未给出,根据语境推测可能是某种丝状真菌]已得到更广泛的表征。由于其生长速度快,营养需求简单,对极端培养条件具有高耐受性,它是工业上生物合成各种产品的有前途的微生物细胞工厂。然而,它是否也是合成大量L-苹果酸的合适宿主仍不清楚。在本研究中,我们基于CRISPR-Cas9和Cre-系统,在[菌株名称未给出,根据语境推测可能是某种丝状真菌]菌株TN02A7中开发了一种方便高效的双基因编辑系统。使用该基因编辑系统,我们通过删除或过表达五个基因(编码丙酮酸羧化酶Pyc、草酰乙酸乙酰水解酶OahA、苹果酸脱氢酶MdhC、C4-二羧酸转运蛋白DctA和柠檬酸转运蛋白CexA),从TN02A7衍生出了一株产L-苹果酸的菌株ZQ07。ZQ07中L-苹果酸的产量比原始未编辑菌株TN02A7提高了约9.6倍(达到30.7 g/L的滴度),而TN02A7中L-苹果酸的产量原本非常低。本研究的结果不仅表明[该物种名称未给出,根据语境推测可能是某种丝状真菌]可作为生物合成有机酸的潜在宿主,还为丝状真菌提供了一种高效的基因编辑策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2a4/10381526/8551da98435c/jof-09-00719-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验