Suppr超能文献

人工智能在临床实验室基因组学中的应用。

Applications of artificial intelligence in clinical laboratory genomics.

作者信息

Aradhya Swaroop, Facio Flavia M, Metz Hillery, Manders Toby, Colavin Alexandre, Kobayashi Yuya, Nykamp Keith, Johnson Britt, Nussbaum Robert L

机构信息

Invitae Corporation, San Francisco, California, USA.

Adjunct Clinical Faculty, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.

出版信息

Am J Med Genet C Semin Med Genet. 2023 Sep;193(3):e32057. doi: 10.1002/ajmg.c.32057. Epub 2023 Jul 28.

Abstract

The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.

摘要

临床实验室基因组学从模拟技术向数字技术的转变,正以超乎人类利用传统方法快速且可重复分析这些数据能力的方式,迎来一个“大数据”时代。准确评估复杂的分子数据以促进基因组疾病的及时诊断和管理,将需要支持性的人工智能方法。这些方法已被引入临床实验室基因组学,用于识别DNA测序数据中的变异,预测DNA变异对蛋白质结构和功能的影响,以指导对致病性的临床解释,将表型本体与通过外显子组或基因组测序确定的基因变异相联系,以帮助临床医生更快地得出诊断答案,将基因组数据与肿瘤分期和治疗方法相关联,在基因组数据分析过程中利用自然语言处理识别关键的已发表医学文献,并使用交互式聊天机器人识别符合基因检测条件的个体或提供检测前和检测后的教育。随着对临床实验室基因组学人工智能的谨慎且符合伦理的开发和验证,这些进展有望显著增强遗传学家将复杂数据转化为清晰综合信息的能力,以供临床医生大规模用于管理患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验