Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
STORIA Law Office, Chuo-ku, Kobe, Hyogo, Japan.
Jpn J Radiol. 2024 Jan;42(1):3-15. doi: 10.1007/s11604-023-01474-3. Epub 2023 Aug 4.
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.
在这篇综述中,我们探讨了人工智能(AI)在医学领域临床应用中的公平性问题。随着深度学习算法(AI 的一个子领域)在临床中的应用不断推进,人们对 AI 偏见和歧视对患者健康的影响表示担忧。本篇综述旨在全面概述与 AI 公平性相关的问题;讨论减轻 AI 偏见的策略;并强调医师、AI 研究人员、AI 开发者、政策制定者和患者之间需要合作,以确保公平地整合 AI。首先,我们定义并介绍了 AI 在医疗保健和放射学中的应用中的公平性概念,强调了将 AI 纳入临床实践的益处和挑战。接下来,我们深入探讨了医疗保健中公平性的关注问题,探讨了 AI 中的偏见的各种原因和潜在问题,例如误诊、治疗机会不平等以及伦理考量。然后,我们概述了应对公平性的策略,例如数据多样性和代表性的重要性以及算法审计。此外,我们还讨论了 AI 中的数据隐私、责任、问责制、透明度和可解释性等伦理和法律考量。最后,我们提出了医疗保健中人工智能公平性(FAIR)声明,以提供最佳实践。通过这些努力,我们旨在为讨论负责任和公平地实施和部署医疗保健中的 AI 提供基础。