Suppr超能文献

从密度泛函理论(DFT)角度看修饰石墨烯与蜘蛛丝主要氨基酸相互作用的光吸收

A Density Functional Theory (DFT) Perspective on Optical Absorption of Modified Graphene Interacting with the Main Amino Acids of Spider Silk.

作者信息

Jiménez-González Ali Fransuani, Ramírez-de-Arellano Juan Manuel, Magaña Solís Luis Fernando

机构信息

Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 01000, Mexico.

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico.

出版信息

Int J Mol Sci. 2023 Jul 28;24(15):12084. doi: 10.3390/ijms241512084.

Abstract

We investigated the possible adsorption of each of the main building blocks of spider silk: alanine, glycine, leucine, and proline. This knowledge could help develop new biocompatible materials and favors the creation of new biosensors. We used ab initio density functional theory methods to study the variations in the optical absorption, reflectivity, and band structure of a modified graphene surface interacting with these four molecules. Four modification cases were considered: graphene with vacancies at 5.55% and fluorine, nitrogen, or oxygen doping, also at 5.55%. We found that, among the cases considered, graphene with vacancies is the best candidate to develop optical biosensors to detect C=O amide and differentiate glycine and leucine from alanine and proline in the visible spectrum region. Finally, from the projected density of states, the main changes occur at deep energies. Thus, all modified graphene's electronic energy band structure undergoes only tiny changes when interacting with amino acids.

摘要

我们研究了蜘蛛丝的每种主要结构单元

丙氨酸、甘氨酸、亮氨酸和脯氨酸的可能吸附情况。这一知识有助于开发新型生物相容性材料,并有利于新型生物传感器的创建。我们使用从头算密度泛函理论方法,研究了与这四种分子相互作用的改性石墨烯表面的光吸收、反射率和能带结构的变化。考虑了四种改性情况:空位率为5.55%的石墨烯以及氟、氮或氧掺杂且掺杂率也为5.55%的石墨烯。我们发现,在所考虑的情况中,有空位的石墨烯是开发光学生物传感器以检测C=O酰胺并在可见光谱区域将甘氨酸和亮氨酸与丙氨酸和脯氨酸区分开来的最佳候选材料。最后,从投影态密度来看,主要变化发生在深能级。因此,所有改性石墨烯的电子能带结构在与氨基酸相互作用时仅发生微小变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7b9/10418814/12a21e45599a/ijms-24-12084-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验