Suppr超能文献

将烯烃复分解反应发挥到极致:三取代烯烃的立体控制合成

Taking Olefin Metathesis to the Limit: Stereocontrolled Synthesis of Trisubstituted Alkenes.

作者信息

Hoveyda Amir H, Qin Can, Sui Xin Zhi, Liu Qinghe, Li Xinghan, Nikbakht Ali

机构信息

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg France.

出版信息

Acc Chem Res. 2023 Sep 19;56(18):2426-2446. doi: 10.1021/acs.accounts.3c00341. Epub 2023 Aug 29.

Abstract

ConspectusIn this Account, we share the story of the development of catalytic olefin metathesis processes that efficiently deliver a wide range of acyclic and macrocyclic - or -trisubstituted alkenes. The tale starts with us unveiling, in collaboration with Richard Schrock and his team, the blueprint in 2009 for the design of kinetically controlled -selective olefin metathesis reactions. This paved the way for the development of Mo-, W-, and Ru-based catalysts and strategies for synthesizing countless linear and macrocyclic -olefins. Six years later, in 2015, we found that abundant -alkene feedstocks, such as oleic acid, can be directly transformed to high-value and more difficult-to-access alkenes through a cross-metathesis reaction promoted by a Ru-catechothiolate complex that we had developed; the approach, later coined stereoretentive olefin metathesis, was extended to the synthesis of -alkenes.It was all about disubstituted alkenes until when in 2017 we addressed the challenge of accessing stereodefined - and -trisubstituted alkenes, key to medicine and materials research. These transformations can be most effectively catalyzed by Mo monoaryloxides pyrrolide (MAP) and chloride (MAC) complexes. A central aspect of the advance is the merging of olefin metathesis, which delivered trisubstituted alkenyl fluorides, chlorides, and bromides with cross-coupling. These catalytic and stereoretentive transformations can be used in various combinations, thereby enabling access to assorted - or -trisubstituted alkene. Ensuing work led to the emergence of other transformations involving substrates that can be purchased with high stereoisomeric purity, notably - and -trihalo alkenes. Trisubstituted olefins, or , bearing a chemoselectively and stereoretentively alterable F,Cl-terminus or B(pin),Cl-terminus may, thus, be easily and reliably synthesized. Methods for stereoretentive preparation of other alkenyl bromide regioisomers and -unsaturated carboxylic and thiol esters, nitriles, and acid fluorides followed, along with stereoretentive ring-closing metathesis reactions that afford macrocyclic trisubstituted olefins. - and -Macrocyclic trisubstituted olefins, including those that contain little or no entropic support for cyclization (minimally functionalized) and/or are disfavored under substrate-controlled conditions, can now be synthesized. The utility of this latest chapter in the history of olefin metathesis has been highlighted by applications to the synthesis of several biologically active compounds, as well as their analogues, such as those marked by one or more site-specifically incorporated fluorine atoms or more active but higher energy and otherwise unobtainable conformers.The investigations discussed here, which represent every stereoretentive method that has been reported thus far for preparing a trisubstituted olefin, underscore the inimitable power of Mo-based catalysts. This Account also showcases a variety of mechanistic attributes─some for the first time, and each instrumental in solving a problem. Extensive knowledge of mechanistic nuances will be needed if we are to address successfully the next challenging problem, namely, the development of catalysts and strategies that may be used to synthesize a wide range of tetrasubstituted alkenes, especially those that are readily modifiable, with high stereoisomeric purity.

摘要

概述

在本综述中,我们讲述了催化烯烃复分解反应的发展历程,这些反应能够高效地生成多种无环和大环的二取代或三取代烯烃。故事始于2009年,我们与理查德·施罗克及其团队合作,揭示了动力学控制的选择性烯烃复分解反应的设计蓝图。这为基于钼、钨和钌的催化剂以及合成无数线性和大环烯烃的策略的发展铺平了道路。六年后,即2015年,我们发现丰富的烯烃原料,如油酸,可以通过我们开发的钌-儿茶酚硫醇盐配合物促进的交叉复分解反应直接转化为高价值且更难获得的烯烃;这种方法后来被称为立体保留烯烃复分解反应,并扩展到了合成二取代烯烃。

在此之前,研究主要集中在二取代烯烃上,直到2017年我们应对了获取立体定义的三取代烯烃的挑战,这对于医学和材料研究至关重要。这些转化可以通过钼单芳氧基吡咯化物(MAP)和氯化物(MAC)配合物最有效地催化。这一进展的核心方面是烯烃复分解反应与交叉偶联的结合,前者生成三取代的烯基氟化物、氯化物和溴化物。这些催化和立体保留转化可以以各种组合使用,从而能够获得各种三取代或四取代烯烃。随后的工作导致了涉及可以以高立体异构体纯度购买的底物的其他转化的出现,特别是三卤代烯烃。因此,可以轻松可靠地合成带有化学选择性和立体保留性可变的氟、氯端基或硼酸频哪醇酯、氯端基的三取代烯烃。接着出现了立体保留制备其他烯基溴区域异构体以及烯丙基不饱和羧酸酯、硫醇酯、腈和酰氟的方法,以及提供大环三取代烯烃的立体保留闭环复分解反应。现在可以合成大环三取代烯烃,包括那些对环化几乎没有或没有熵支持(功能最少化)和/或在底物控制条件下不利的化合物。烯烃复分解反应历史上这最新一章的实用性通过其在合成几种生物活性化合物及其类似物中的应用得到了突出体现,例如那些带有一个或多个位点特异性引入的氟原子或更具活性但能量更高且否则无法获得的构象异构体的化合物。

这里讨论的研究代表了迄今为止报道的用于制备三取代烯烃的每一种立体保留方法,强调了基于钼的催化剂的独特能力。本综述还展示了各种机理特性——有些是首次展示,并且每种特性在解决问题中都发挥了作用。如果我们要成功应对下一个具有挑战性的问题,即开发可用于合成多种四取代烯烃,特别是那些易于修饰且具有高立体异构体纯度的催化剂和策略,就需要对机理细微差别有广泛的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验