Zhong Hongyu, Egger Dominic T, Gasser Valentina C M, Finkelstein Patrick, Keim Loris, Seidel Merlin Z, Trapp Nils, Morandi Bill
Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.
Nat Commun. 2023 Aug 29;14(1):5273. doi: 10.1038/s41467-023-40979-3.
Classical metalation reactions such as the metal-halogen exchange have had a transformative impact on organic synthesis owing to their broad applicability in building carbon-carbon bonds from carbon-halogen bonds. Extending the metal-halogen exchange logic to a metal-carbon exchange would enable the direct modification of carbon frameworks with new implications in retrosynthetic analysis. However, such a transformation requires the selective cleavage of highly inert chemical bonds and formation of stable intermediates amenable to further synthetic elaborations, hence its development has remained considerably challenging. Here we introduce a skeletal metalation strategy that allows lactams, a prevalent motif in bioactive molecules, to be readily converted into well-defined, synthetically useful organonickel reagents. The reaction features a selective activation of unstrained amide C-N bonds mediated by an easily prepared Ni(0) reagent, followed by CO deinsertion and dissociation under mild room temperature conditions in a formal carbonyl-to-nickel-exchange process. The underlying principles of this unique reactivity are rationalized by organometallic and computational studies. The skeletal metalation is further applied to a direct CO excision reaction and a carbon isotope exchange reaction of lactams, underscoring the broad potential of metal-carbon exchange logic in organic synthesis.
经典的金属化反应,如金属-卤素交换反应,因其在通过碳-卤键构建碳-碳键方面的广泛适用性,对有机合成产生了变革性影响。将金属-卤素交换逻辑扩展到金属-碳交换,将能够直接修饰碳骨架,这在逆合成分析中具有新的意义。然而,这种转化需要选择性断裂高度惰性的化学键并形成适合进一步合成转化的稳定中间体,因此其发展仍然极具挑战性。在此,我们介绍一种骨架金属化策略,该策略可使内酰胺(生物活性分子中普遍存在的结构单元)轻松转化为定义明确、具有合成用途的有机镍试剂。该反应的特点是由一种易于制备的Ni(0)试剂介导,选择性活化无张力的酰胺C-N键,随后在温和的室温条件下,通过一个形式上的羰基到镍的交换过程进行CO脱插入和解离。有机金属和计算研究阐明了这种独特反应性的基本原理。骨架金属化进一步应用于内酰胺的直接CO消除反应和碳同位素交换反应,突出了金属-碳交换逻辑在有机合成中的广泛潜力。