Suppr超能文献

利用荧光寿命成像显微镜(FLIM)探测类器官代谢:药物发现和疾病认识的下一个前沿。

Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding.

机构信息

Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.

Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 02, Ireland.

出版信息

Adv Drug Deliv Rev. 2023 Oct;201:115081. doi: 10.1016/j.addr.2023.115081. Epub 2023 Aug 28.

Abstract

Organoid models have been used to address important questions in developmental and cancer biology, tissue repair, advanced modelling of disease and therapies, among other bioengineering applications. Such 3D microenvironmental models can investigate the regulation of cell metabolism, and provide key insights into the mechanisms at the basis of cell growth, differentiation, communication, interactions with the environment and cell death. Their accessibility and complexity, based on 3D spatial and temporal heterogeneity, make organoids suitable for the application of novel, dynamic imaging microscopy methods, such as fluorescence lifetime imaging microscopy (FLIM) and related decay time-assessing readouts. Several biomarkers and assays have been proposed to study cell metabolism by FLIM in various organoid models. Herein, we present an expert-opinion discussion on the principles of FLIM and PLIM, instrumentation and data collection and analysis protocols, and general and emerging biosensor-based approaches, to highlight the pioneering work being performed in this field.

摘要

类器官模型已被用于解决发育和癌症生物学、组织修复、疾病和治疗的先进建模等生物工程应用中的重要问题。这种 3D 微环境模型可以研究细胞代谢的调节,并为细胞生长、分化、通讯、与环境相互作用和细胞死亡的基础机制提供关键见解。类器官基于 3D 空间和时间异质性的可及性和复杂性,使其适合应用新型动态成像显微镜方法,如荧光寿命成像显微镜(FLIM)和相关的衰减时间评估读出。已经提出了几种生物标志物和测定方法,通过 FLIM 在各种类器官模型中研究细胞代谢。在此,我们就 FLIM 和 PLIM 的原理、仪器和数据采集与分析协议以及基于通用和新兴生物传感器的方法进行专家讨论,以突出该领域正在进行的开创性工作。

相似文献

3
Visualization of Stem Cell Niche by Fluorescence Lifetime Imaging Microscopy.
Methods Mol Biol. 2020;2171:65-97. doi: 10.1007/978-1-0716-0747-3_5.
4
Structural and Functional Characterization of Human Stem-Cell-Derived Retinal Organoids by Live Imaging.
Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3311-3318. doi: 10.1167/iovs.16-20796.
5
Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering.
Acta Biomater. 2018 Oct 15;80:85-96. doi: 10.1016/j.actbio.2018.09.034. Epub 2018 Sep 25.
6
Estimation of the Mitochondrial Membrane Potential Using Fluorescence Lifetime Imaging Microscopy.
Cytometry A. 2020 May;97(5):471-482. doi: 10.1002/cyto.a.23886. Epub 2019 Sep 5.
10
Live cell imaging of mouse intestinal organoids reveals heterogeneity in their oxygenation.
Biomaterials. 2017 Nov;146:86-96. doi: 10.1016/j.biomaterials.2017.08.043. Epub 2017 Sep 3.

引用本文的文献

1
Innovative strategies for bone organoid: Synergistic application and exploration of advanced technologies.
J Orthop Translat. 2025 Aug 14;54:180-198. doi: 10.1016/j.jot.2025.07.010. eCollection 2025 Sep.
3
Multimodal Phasor Approach to Study Breast Cancer Cell Invasion in a 3D Spheroid Model.
Chem Biomed Imaging. 2025 May 15;3(7):433-442. doi: 10.1021/cbmi.5c00021. eCollection 2025 Jul 28.
5
Advancing next-generation brain organoid platforms for investigating traumatic brain injury from repeated blast exposures.
Front Bioeng Biotechnol. 2025 Jun 18;13:1553609. doi: 10.3389/fbioe.2025.1553609. eCollection 2025.
6
Lack of biochemical signalling in GelMA leads to polarity reversion in intestinal organoids independent from mechanoreciprocity.
J Tissue Eng. 2025 Jun 13;16:20417314251345000. doi: 10.1177/20417314251345000. eCollection 2025 Jan-Dec.
8
Practical guide to fluorescence lifetime imaging microscopy.
Mol Biol Cell. 2025 Jun 1;36(6):tp1. doi: 10.1091/mbc.E24-03-0110.
10
FLIMB: fluorescence lifetime microendoscopy for metabolic and functional imaging of femoral marrow at subcellular resolution.
Biomed Opt Express. 2025 Mar 31;16(4):1711-1731. doi: 10.1364/BOE.549311. eCollection 2025 Apr 1.

本文引用的文献

1
Tutorial: fluorescence lifetime microscopy of membrane mechanosensitive Flipper probes.
Nat Protoc. 2024 Dec;19(12):3457-3469. doi: 10.1038/s41596-024-01027-6. Epub 2024 Aug 29.
2
Label-free optical imaging and sensing for quality control of stem cell manufacturing.
Curr Opin Biomed Eng. 2023 Mar;25. doi: 10.1016/j.cobme.2022.100435. Epub 2022 Dec 13.
3
Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array.
J Biomed Opt. 2023 Jun;28(6):066502. doi: 10.1117/1.JBO.28.6.066502. Epub 2023 Jun 21.
4
In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET.
Biophys Rep (N Y). 2023 May 9;3(2):100110. doi: 10.1016/j.bpr.2023.100110. eCollection 2023 Jun 14.
5
Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse.
Sci Adv. 2023 Apr 28;9(17):eadf9063. doi: 10.1126/sciadv.adf9063. Epub 2023 Apr 26.
6
Multisite assessment of reproducibility in high-content cell migration imaging data.
Mol Syst Biol. 2023 Jun 12;19(6):e11490. doi: 10.15252/msb.202211490. Epub 2023 Apr 17.
7
Active mesh and neural network pipeline for cell aggregate segmentation.
Biophys J. 2023 May 2;122(9):1586-1599. doi: 10.1016/j.bpj.2023.03.038. Epub 2023 Mar 30.
8
mScarlet3: a brilliant and fast-maturing red fluorescent protein.
Nat Methods. 2023 Apr;20(4):541-545. doi: 10.1038/s41592-023-01809-y. Epub 2023 Mar 27.
10
NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption.
Biophys J. 2023 Apr 4;122(7):1240-1253. doi: 10.1016/j.bpj.2023.02.014. Epub 2023 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验