Suppr超能文献

T 细胞组织驻留的代谢程序赋予了肿瘤免疫能力。

Metabolic programs of T cell tissue residency empower tumour immunity.

机构信息

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.

Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

出版信息

Nature. 2023 Sep;621(7977):179-187. doi: 10.1038/s41586-023-06483-w. Epub 2023 Aug 30.

Abstract

Tissue resident memory CD8 T (T) cells offer rapid and long-term protection at sites of reinfection. Tumour-infiltrating lymphocytes with characteristics of T cells maintain enhanced effector functions, predict responses to immunotherapy and accompany better prognoses. Thus, an improved understanding of the metabolic strategies that enable tissue residency by T cells could inform new approaches to empower immune responses in tissues and solid tumours. Here, to systematically define the basis for the metabolic reprogramming supporting T cell differentiation, survival and function, we leveraged in vivo functional genomics, untargeted metabolomics and transcriptomics of virus-specific memory CD8 T cell populations. We found that memory CD8 T cells deployed a range of adaptations to tissue residency, including reliance on non-steroidal products of the mevalonate-cholesterol pathway, such as coenzyme Q, driven by increased activity of the transcription factor SREBP2. This metabolic adaptation was most pronounced in the small intestine, where T cells interface with dietary cholesterol and maintain a heightened state of activation, and was shared by functional tumour-infiltrating lymphocytes in diverse tumour types in mice and humans. Enforcing synthesis of coenzyme Q through deletion of Fdft1 or overexpression of PDSS2 promoted mitochondrial respiration, memory T cell formation following viral infection and enhanced antitumour immunity. In sum, through a systematic exploration of T cell metabolism, we reveal how these programs can be leveraged to fuel memory CD8 T cell formation in the context of acute infections and enhance antitumour immunity.

摘要

组织驻留记忆 CD8 T(T)细胞在再次感染部位提供快速和长期的保护。具有 T 细胞特征的肿瘤浸润淋巴细胞保持增强的效应功能,预测对免疫治疗的反应,并伴有更好的预后。因此,更好地了解使 T 细胞具有组织驻留能力的代谢策略,可以为增强组织和实体肿瘤中的免疫反应提供新的方法。在这里,为了系统地定义支持 T 细胞分化、存活和功能的代谢重编程的基础,我们利用了体内功能基因组学、病毒特异性记忆 CD8 T 细胞群体的非靶向代谢组学和转录组学。我们发现记忆 CD8 T 细胞采用了一系列适应组织驻留的方法,包括依赖非甾体类甲羟戊酸胆固醇途径产物,如辅酶 Q,这是由转录因子 SREBP2 活性增加驱动的。这种代谢适应在小肠中最为明显,T 细胞与膳食胆固醇相互作用并保持高度激活状态,并且在小鼠和人类的多种肿瘤类型中具有功能的肿瘤浸润淋巴细胞中也存在。通过删除 Fdft1 或过表达 PDSS2 来强制合成辅酶 Q,可促进线粒体呼吸、病毒感染后记忆 T 细胞的形成,并增强抗肿瘤免疫。总之,通过对 T 细胞代谢的系统探索,我们揭示了如何利用这些程序在急性感染的情况下促进记忆 CD8 T 细胞的形成,并增强抗肿瘤免疫。

相似文献

1
Metabolic programs of T cell tissue residency empower tumour immunity.
Nature. 2023 Sep;621(7977):179-187. doi: 10.1038/s41586-023-06483-w. Epub 2023 Aug 30.
2
Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells.
Elife. 2021 Oct 15;10:e70989. doi: 10.7554/eLife.70989.
4
Impact of rosuvastatin on the memory potential and functionality of CD8 T cells from people with HIV.
EBioMedicine. 2025 Apr;114:105672. doi: 10.1016/j.ebiom.2025.105672. Epub 2025 Mar 29.
6
Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers.
Nature. 2021 Aug;596(7870):126-132. doi: 10.1038/s41586-021-03752-4. Epub 2021 Jul 21.
7
Resident memory T cell development is gradual and shows AP-1 gene expression in mature cells.
JCI Insight. 2025 Jun 23;10(12). doi: 10.1172/jci.insight.187381.
8
The extra-islet pancreas supports autoimmunity in human type 1 diabetes.
Elife. 2025 Apr 15;13:RP100535. doi: 10.7554/eLife.100535.
9
Transgelin 2 guards T cell lipid metabolism and antitumour function.
Nature. 2024 Nov;635(8040):1010-1018. doi: 10.1038/s41586-024-08071-y. Epub 2024 Oct 23.
10
The XCL1-XCR1 axis supports intestinal tissue residency and antitumor immunity.
J Exp Med. 2025 Mar 3;222(2). doi: 10.1084/jem.20240776. Epub 2025 Jan 22.

引用本文的文献

1
A mitochondrial ferroptosis-related gene signature predicts prognosis and immune landscape in colon cancer.
Front Med (Lausanne). 2025 Sep 1;12:1614012. doi: 10.3389/fmed.2025.1614012. eCollection 2025.
2
Metabolic control of innate-like T cells.
Nat Rev Immunol. 2025 Sep 8. doi: 10.1038/s41577-025-01219-5.
4
Mitochondrial Transfer Between Cancer and T Cells: Implications for Immune Evasion.
Antioxidants (Basel). 2025 Aug 18;14(8):1008. doi: 10.3390/antiox14081008.
5
Tissue-Resident Memory T Cells in Cancer Metastasis Control.
Cells. 2025 Aug 21;14(16):1297. doi: 10.3390/cells14161297.
6
Beyond T-cell subsets: stemness and adaptation redefining immunity and immunotherapy.
Cell Mol Immunol. 2025 Jul 10. doi: 10.1038/s41423-025-01321-7.
8
Cholesterol metabolism reprogramming in multiple myeloma: examining its specificity and impact on the immune microenvironment.
Am J Cancer Res. 2025 May 15;15(5):2004-2021. doi: 10.62347/CCCT1933. eCollection 2025.
9
Advances in molecular pathology and therapy of non-small cell lung cancer.
Signal Transduct Target Ther. 2025 Jun 15;10(1):186. doi: 10.1038/s41392-025-02243-6.
10
Spatial omics technology potentially promotes the progress of tumor immunotherapy.
Br J Cancer. 2025 Jun 2. doi: 10.1038/s41416-025-03075-5.

本文引用的文献

1
Functional T cells are capable of supernumerary cell division and longevity.
Nature. 2023 Feb;614(7949):762-766. doi: 10.1038/s41586-022-05626-9. Epub 2023 Jan 18.
3
Pan-cancer single-cell landscape of tumor-infiltrating T cells.
Science. 2021 Dec 17;374(6574):abe6474. doi: 10.1126/science.abe6474.
5
UCell: Robust and scalable single-cell gene signature scoring.
Comput Struct Biotechnol J. 2021 Jun 30;19:3796-3798. doi: 10.1016/j.csbj.2021.06.043. eCollection 2021.
6
Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8 T cells in tumors.
Immunity. 2021 Jul 13;54(7):1561-1577.e7. doi: 10.1016/j.immuni.2021.05.003. Epub 2021 Jun 7.
7
CD8 T cell metabolism in infection and cancer.
Nat Rev Immunol. 2021 Nov;21(11):718-738. doi: 10.1038/s41577-021-00537-8. Epub 2021 May 12.
8
γδ T cells regulate the intestinal response to nutrient sensing.
Science. 2021 Mar 19;371(6535). doi: 10.1126/science.aba8310.
9
Expansible residence decentralizes immune homeostasis.
Nature. 2021 Apr;592(7854):457-462. doi: 10.1038/s41586-021-03351-3. Epub 2021 Mar 17.
10
In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8 T cell fate decisions.
Cell. 2021 Mar 4;184(5):1245-1261.e21. doi: 10.1016/j.cell.2021.02.021. Epub 2021 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验