Widera Paweł, Welsing Paco M J, Danso Samuel O, Peelen Sjaak, Kloppenburg Margreet, Loef Marieke, Marijnissen Anne C, van Helvoort Eefje M, Blanco Francisco J, Magalhães Joana, Berenbaum Francis, Haugen Ida K, Bay-Jensen Anne-Christine, Mobasheri Ali, Ladel Christoph, Loughlin John, Lafeber Floris P J G, Lalande Agnès, Larkin Jonathan, Weinans Harrie, Bacardit Jaume
School of Computing, Newcastle University, Newcastle, UK.
Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
Osteoarthr Cartil Open. 2023 Aug 18;5(4):100406. doi: 10.1016/j.ocarto.2023.100406. eCollection 2023 Dec.
To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study.
We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression.
From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (, 30%), structure (, 13%), and combined pain and structure (, 5%), and a proportion of non-progressors ( 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81-0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52-0.70] for structure-related progression. Progressors were ranked higher than non-progressors for (median rank 65 vs 143, AUC = 0.75), (median rank 77 vs 143, AUC = 0.71), and patients (median rank 107 vs 143, AUC = 0.57).
The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial.
为了有效评估新型骨关节炎治疗方法的疾病修饰潜力,临床试验需要病情进展丰富的患者群体。为了评估机器学习的应用是否能实现患者选择的富集,我们开发了一种针对进展性患者的机器学习招募策略,并在IMI-APPROACH膝关节骨关节炎前瞻性研究中对其进行了验证。
我们设计了一个两阶段招募过程,该过程由经过训练以根据进展可能性对候选人进行排名的机器学习模型提供支持。第一阶段模型使用来自现有队列的数据来选择患者进行筛查访视。第二阶段模型使用筛查数据来确定最终入选者。使用实际的24个月病情进展情况评估了该过程的有效性。
从3500名候选患者中,筛选出433例膝关节骨关节炎患者,297例入组,247例完成了2年的随访访视。我们观察到与疼痛相关的进展(,30%)、结构相关的进展(,13%)以及疼痛和结构联合进展(,5%),并且非进展者的比例(52%)比未富集人群低约15%。我们的模型预测这些结果时,与疼痛相关进展的AUC为0.86 [95% CI,0.81 - 0.90],与结构相关进展的AUC为0.61 [95% CI,0.52 - 0.70]。进展者在 (中位排名65对143,AUC = 0.75)、 (中位排名77对143,AUC = 0.71)和 患者(中位排名107对143,AUC = 0.57)方面的排名高于非进展者。
机器学习支持的招募导致了进展性患者的富集选择。需要进一步研究以改善结构进展预测,并在干预试验中评估该策略。