Suppr超能文献

E(3)等变图神经网络用于稳健和准确的蛋白质-蛋白质相互作用位点预测。

E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America.

出版信息

PLoS Comput Biol. 2023 Aug 31;19(8):e1011435. doi: 10.1371/journal.pcbi.1011435. eCollection 2023 Aug.

Abstract

Artificial intelligence-powered protein structure prediction methods have led to a paradigm-shift in computational structural biology, yet contemporary approaches for predicting the interfacial residues (i.e., sites) of protein-protein interaction (PPI) still rely on experimental structures. Recent studies have demonstrated benefits of employing graph convolution for PPI site prediction, but ignore symmetries naturally occurring in 3-dimensional space and act only on experimental coordinates. Here we present EquiPPIS, an E(3) equivariant graph neural network approach for PPI site prediction. EquiPPIS employs symmetry-aware graph convolutions that transform equivariantly with translation, rotation, and reflection in 3D space, providing richer representations for molecular data compared to invariant convolutions. EquiPPIS substantially outperforms state-of-the-art approaches based on the same experimental input, and exhibits remarkable robustness by attaining better accuracy with predicted structural models from AlphaFold2 than what existing methods can achieve even with experimental structures. Freely available at https://github.com/Bhattacharya-Lab/EquiPPIS, EquiPPIS enables accurate PPI site prediction at scale.

摘要

人工智能驱动的蛋白质结构预测方法在计算结构生物学领域引发了一场范式转变,然而,目前预测蛋白质-蛋白质相互作用(PPI)界面残基(即位点)的方法仍然依赖于实验结构。最近的研究表明,图卷积在 PPI 位点预测中的应用具有优势,但它们忽略了 3D 空间中自然存在的对称性,并且仅作用于实验坐标。在这里,我们提出了 EquiPPIS,这是一种用于 PPI 位点预测的 E(3)等变图神经网络方法。EquiPPIS 采用了对称感知图卷积,在 3D 空间中进行平移、旋转和反射等变变换,与不变卷积相比,为分子数据提供了更丰富的表示。EquiPPIS 大大优于基于相同实验输入的最先进方法,并且通过使用 AlphaFold2 预测的结构模型获得比现有方法甚至使用实验结构更好的准确性,表现出显著的稳健性。可在 https://github.com/Bhattacharya-Lab/EquiPPIS 上免费获得,EquiPPIS 能够实现大规模的准确 PPI 位点预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4cb/10499216/2b247eaa4eaa/pcbi.1011435.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验