Suppr超能文献

人类着丝粒的表观遗传遗传和边界维持。

Epigenetic inheritance and boundary maintenance at human centromeres.

机构信息

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States. Electronic address: https://twitter.com/@pra_sidh.

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States.

出版信息

Curr Opin Struct Biol. 2023 Oct;82:102694. doi: 10.1016/j.sbi.2023.102694. Epub 2023 Aug 30.

Abstract

Centromeres are chromosomal regions that provide the foundation for microtubule attachment during chromosome segregation. Centromeres are epigenetically defined by nucleosomes containing the histone H3 variant centromere protein A (CENP-A) and, in many organisms, are surrounded by transcriptionally repressed pericentromeric chromatin marked by trimethylation of histone H3 lysine 9 (H3K9me3). Pericentromeric regions facilitate sister chromatid cohesion during mitosis, thereby supporting centromere function. Heterochromatin has a known propensity to spread into adjacent euchromatic domains unless it is properly bounded. Heterochromatin spreading into the centromere can disrupt kinetochore function, perturbing chromosome segregation and genome stability. In the fission yeast Schizosaccharomyces pombe, tRNA genes provide barriers to heterochromatin spread at the centromere, the absence of which results in abnormal meiotic chromosome segregation. How heterochromatin-centromere boundaries are established in humans is not understood. We propose models for stable epigenetic inheritance of centromeric domains in humans and discuss advances that will enable the discovery of novel regulators of this process.

摘要

着丝粒是染色体区域,为染色体分离过程中微管附着提供基础。着丝粒通过含有组蛋白 H3 变体着丝粒蛋白 A(CENP-A)的核小体在表观上定义,并且在许多生物体中,被转录抑制的着丝粒周围染色质包围,其特征是组蛋白 H3 赖氨酸 9(H3K9me3)的三甲基化。着丝粒周围区域在有丝分裂过程中促进姐妹染色单体的黏合,从而支持着丝粒功能。异染色质有向相邻常染色质区域扩散的已知趋势,除非它被适当限制。异染色质向着丝粒的扩散会破坏动粒功能,扰乱染色体分离和基因组稳定性。在裂殖酵母 Schizosaccharomyces pombe 中,tRNA 基因为着丝粒处异染色质的扩散提供了障碍,缺失这些基因会导致异常的减数分裂染色体分离。在人类中,异染色质-着丝粒边界是如何建立的尚不清楚。我们提出了人类着丝粒区域稳定的表观遗传遗传模型,并讨论了将有助于发现该过程新调节因子的进展。

相似文献

1
Epigenetic inheritance and boundary maintenance at human centromeres.
Curr Opin Struct Biol. 2023 Oct;82:102694. doi: 10.1016/j.sbi.2023.102694. Epub 2023 Aug 30.
2
Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENP-A(Cnp1) in fission yeast.
PLoS Genet. 2012 Sep;8(9):e1002985. doi: 10.1371/journal.pgen.1002985. Epub 2012 Sep 20.
4
Heterochromatin and RNAi regulate centromeres by protecting CENP-A from ubiquitin-mediated degradation.
PLoS Genet. 2018 Aug 8;14(8):e1007572. doi: 10.1371/journal.pgen.1007572. eCollection 2018 Aug.
5
The Ino80 complex mediates epigenetic centromere propagation via active removal of histone H3.
Nat Commun. 2017 Sep 13;8(1):529. doi: 10.1038/s41467-017-00704-3.
6
Ccp1 modulates epigenetic stability at centromeres and affects heterochromatin distribution in .
J Biol Chem. 2018 Aug 3;293(31):12068-12080. doi: 10.1074/jbc.RA118.003873. Epub 2018 Jun 13.
7
Kinetochore and heterochromatin domains of the fission yeast centromere.
Chromosome Res. 2004;12(6):521-34. doi: 10.1023/B:CHRO.0000036586.81775.8b.
9
Ectopic centromere nucleation by CENP--a in fission yeast.
Genetics. 2014 Dec;198(4):1433-46. doi: 10.1534/genetics.114.171173. Epub 2014 Oct 7.
10
A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains.
Curr Biol. 2006 Jan 24;16(2):119-29. doi: 10.1016/j.cub.2005.11.065.

引用本文的文献

1
Histone H3 lysine methyltransferase activities control compartmentalization of human centromeres.
bioRxiv. 2025 Jul 4:2025.07.01.662447. doi: 10.1101/2025.07.01.662447.
2
Regulation of outer kinetochore assembly during meiosis I and II by CENP-A and KNL-2/M18BP1 in C. elegans oocytes.
Curr Biol. 2024 Nov 4;34(21):4853-4868.e6. doi: 10.1016/j.cub.2024.09.004. Epub 2024 Sep 30.
3
Expansion of human centromeric arrays in cells undergoing break-induced replication.
bioRxiv. 2023 Nov 15:2023.11.11.566714. doi: 10.1101/2023.11.11.566714.

本文引用的文献

1
Design principles of 3D epigenetic memory systems.
Science. 2023 Nov 17;382(6672):eadg3053. doi: 10.1126/science.adg3053.
3
Human centromere repositioning activates transcription and opens chromatin fibre structure.
Nat Commun. 2022 Sep 24;13(1):5609. doi: 10.1038/s41467-022-33426-2.
4
Centromere Identity and the Regulation of Chromosome Segregation.
Front Cell Dev Biol. 2022 Jun 2;10:914249. doi: 10.3389/fcell.2022.914249. eCollection 2022.
5
Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase.
Nucleic Acids Res. 2022 May 6;50(8):4500-4514. doi: 10.1093/nar/gkac259.
6
DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide.
Nat Methods. 2022 Jun;19(6):711-723. doi: 10.1038/s41592-022-01475-6. Epub 2022 Apr 8.
7
From telomere to telomere: The transcriptional and epigenetic state of human repeat elements.
Science. 2022 Apr;376(6588):eabk3112. doi: 10.1126/science.abk3112. Epub 2022 Apr 1.
8
Epigenetic patterns in a complete human genome.
Science. 2022 Apr;376(6588):eabj5089. doi: 10.1126/science.abj5089. Epub 2022 Apr 1.
9
Complete genomic and epigenetic maps of human centromeres.
Science. 2022 Apr;376(6588):eabl4178. doi: 10.1126/science.abl4178. Epub 2022 Apr 1.
10
Genome surveillance by HUSH-mediated silencing of intronless mobile elements.
Nature. 2022 Jan;601(7893):440-445. doi: 10.1038/s41586-021-04228-1. Epub 2021 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验