Suppr超能文献

少突胶质细胞中 BMAL1 的缺失导致髓鞘形成异常和睡眠障碍。

BMAL1 loss in oligodendroglia contributes to abnormal myelination and sleep.

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA.

出版信息

Neuron. 2023 Nov 15;111(22):3604-3618.e11. doi: 10.1016/j.neuron.2023.08.002. Epub 2023 Aug 31.

Abstract

Myelination depends on the maintenance of oligodendrocytes that arise from oligodendrocyte precursor cells (OPCs). We show that OPC-specific proliferation, morphology, and BMAL1 are time-of-day dependent. Knockout of Bmal1 in mouse OPCs during development disrupts the expression of genes associated with circadian rhythms, proliferation, density, morphology, and migration, leading to changes in OPC dynamics in a spatiotemporal manner. Furthermore, these deficits translate into thinner myelin, dysregulated cognitive and motor functions, and sleep fragmentation. OPC-specific Bmal1 loss in adulthood does not alter OPC density at baseline but impairs the remyelination of a demyelinated lesion driven by changes in OPC morphology and migration. Lastly, we show that sleep fragmentation is associated with increased prevalence of the demyelinating disorder multiple sclerosis (MS), suggesting a link between MS and sleep that requires further investigation. These findings have broad mechanistic and therapeutic implications for brain disorders that include both myelin and sleep phenotypes.

摘要

髓鞘形成依赖于少突胶质前体细胞(OPC)产生的少突胶质细胞的维持。我们表明,OPC 特异性增殖、形态和 BMAL1 与昼夜节律有关。在发育过程中敲除小鼠 OPC 中的 Bmal1 会破坏与昼夜节律、增殖、密度、形态和迁移相关的基因表达,导致 OPC 动力学以时空方式发生变化。此外,这些缺陷转化为髓鞘变薄、认知和运动功能失调以及睡眠碎片化。成年期 OPC 特异性 Bmal1 缺失不会改变基线时的 OPC 密度,但会损害由 OPC 形态和迁移变化驱动的脱髓鞘病变的髓鞘再生。最后,我们表明,睡眠碎片化与脱髓鞘疾病多发性硬化症(MS)的患病率增加有关,这表明 MS 与睡眠之间存在联系,需要进一步研究。这些发现对包括髓鞘和睡眠表型在内的脑疾病具有广泛的机制和治疗意义。

相似文献

1
BMAL1 loss in oligodendroglia contributes to abnormal myelination and sleep.
Neuron. 2023 Nov 15;111(22):3604-3618.e11. doi: 10.1016/j.neuron.2023.08.002. Epub 2023 Aug 31.
5
Myelin regulatory factor drives remyelination in multiple sclerosis.
Acta Neuropathol. 2017 Sep;134(3):403-422. doi: 10.1007/s00401-017-1741-7. Epub 2017 Jun 19.
6
Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.
J Neurosci. 2017 Oct 18;37(42):10038-10051. doi: 10.1523/JNEUROSCI.1787-17.2017. Epub 2017 Sep 12.
7
10
Chronic demyelination of rabbit lesions is attributable to failed oligodendrocyte progenitor cell repopulation.
Glia. 2023 Apr;71(4):1018-1035. doi: 10.1002/glia.24324. Epub 2022 Dec 20.

引用本文的文献

1
Astrocyte Autophagy in Neurodegenerative Diseases: Current Progress in Mechanisms and Therapeutics.
Neurochem Res. 2025 Sep 5;50(5):287. doi: 10.1007/s11064-025-04532-6.
5
Chemotherapy's hidden side effect: sleepless nights without cancer.
Sleep. 2025 Jul 11;48(7). doi: 10.1093/sleep/zsaf110.
7
Effects of aging on diurnal transcriptome change in the mouse corpus callosum.
iScience. 2024 Dec 9;28(1):111556. doi: 10.1016/j.isci.2024.111556. eCollection 2025 Jan 17.
9
Glia: the cellular glue that binds circadian rhythms and sleep.
Sleep. 2025 Mar 11;48(3). doi: 10.1093/sleep/zsae314.

本文引用的文献

1
The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models.
Clocks Sleep. 2023 May 15;5(2):276-294. doi: 10.3390/clockssleep5020022.
2
Oligodendrocyte precursor cells engulf synapses during circuit remodeling in mice.
Nat Neurosci. 2022 Oct;25(10):1273-1278. doi: 10.1038/s41593-022-01170-x. Epub 2022 Sep 28.
3
Endogenous Circadian Clock Machinery in Cortical NG2-Glia Regulates Cellular Proliferation.
eNeuro. 2022 Oct 4;9(5). doi: 10.1523/ENEURO.0110-22.2022. Print 2022 Sep-Oct.
4
Sirt2 promotes white matter oligodendrogenesis during development and in models of neonatal hypoxia.
Nat Commun. 2022 Aug 15;13(1):4771. doi: 10.1038/s41467-022-32462-2.
5
When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives.
Int J Mol Sci. 2022 Apr 30;23(9):5028. doi: 10.3390/ijms23095028.
6
Daytime napping and Alzheimer's dementia: A potential bidirectional relationship.
Alzheimers Dement. 2023 Jan;19(1):158-168. doi: 10.1002/alz.12636. Epub 2022 Mar 17.
7
Nitecap: An Exploratory Circadian Analysis Web Application.
J Biol Rhythms. 2022 Feb;37(1):43-52. doi: 10.1177/07487304211054408. Epub 2021 Nov 2.
8
Periods of synchronized myelin changes shape brain function and plasticity.
Nat Neurosci. 2021 Nov;24(11):1508-1521. doi: 10.1038/s41593-021-00917-2. Epub 2021 Oct 28.
9
Differentially expressed genes in Alzheimer's disease highlighting the roles of microglia genes including OLR1 and astrocyte gene CDK2AP1.
Brain Behav Immun Health. 2021 Feb 24;13:100227. doi: 10.1016/j.bbih.2021.100227. eCollection 2021 May.
10
A role for the cortex in sleep-wake regulation.
Nat Neurosci. 2021 Sep;24(9):1210-1215. doi: 10.1038/s41593-021-00894-6. Epub 2021 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验