Department of Chemistry and Biochemistry, University of California, Merced, CA, USA.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
Trends Biochem Sci. 2023 Dec;48(12):1019-1034. doi: 10.1016/j.tibs.2023.08.001. Epub 2023 Aug 31.
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
无序蛋白质和蛋白质区域(IDR)在真核生物蛋白质组中大量存在,并发挥着各种各样的重要作用。IDR 并不折叠成稳定的结构,而是存在于一系列相互转化的构象中,其结构受到序列依赖性相互作用的影响。由于缺乏稳定的 3D 结构,再加上高溶剂可及性,这意味着 IDR 的构象偏向性本质上对环境变化很敏感。在这里,我们认为 IDR 非常适合作为细胞物理化学的传感器和执行器。我们回顾了 IDR 敏感性的物理原理、将这种敏感性转化为功能的分子机制,以及最近的一些研究,其中 IDR 的环境感应可能在其下游功能中发挥关键作用。