Zhao Zhenzhen, Liu Yanfeng, Liu Chao, Xu Qianqian, Song Meijie, Yan Hai
College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, 261061 China.
Weifang Ecological Environment Monitoring Center of Shandong Province, Weifang, 261011 China.
3 Biotech. 2023 Oct;13(10):329. doi: 10.1007/s13205-023-03736-3. Epub 2023 Sep 3.
Extensive use of phthalic acid esters (PAEs) as plasticizer causes diffusion into the environment, which posed a great threat to mankind. It was reported that sp. was a potentially robust aromatic biodegrader. Although the biodegradation of several PAEs by sp. was studies, the comprehensive genomic analysis of Comamonas sp. was few reported. In the present study, one promising bacterial strain for biodegrading diethyl phthalate (DEP) was successfully isolated from activated sludge and characterized as sp. USTBZA1 based on the 16S rRNA sequence analysis. The results showed that pH 7.5, 30 °C and inoculum volume ratio of 6% were optimal for biodegradation. Initial DEP of 50 mg/L could be completely biodegrade by strain USTBZA1 within 24 h which conformed to the Gompertz model. Based on the Q-TOF LC/MS analysis, monoethyl phthalate (MEP) and phthalic acid (PA) were identified as the metabolic products of DEP biodegradation by USTBZA1. Furthermore, the whole genome of sp. USTBZA1 was analyzed to clarify the molecular mechanism for PAEs biodegradation by USTBZA1. There were 3 and 41 genes encoding esterase/arylesterase and hydrolase, respectively, and two genes regions (34512 and 4253) were responsible for the conversion of PA to protocatechuate (PCA), and two genes regions (CBAIKJ) were involved in PCA metabolism in USTBZA1. These results substantiated that sp. USTBZA1 has potential application in the DEP bioremediation.
The online version contains supplementary material available at 10.1007/s13205-023-03736-3.
邻苯二甲酸酯(PAEs)作为增塑剂的广泛使用导致其扩散到环境中,这对人类构成了巨大威胁。据报道,某菌株是一种潜在强大的芳香族生物降解菌。尽管已经研究了该菌株对几种PAEs的生物降解,但关于Comamonas菌属的综合基因组分析报道较少。在本研究中,从活性污泥中成功分离出一株降解邻苯二甲酸二乙酯(DEP)的有前景的细菌菌株,并根据16S rRNA序列分析将其鉴定为Comamonas sp. USTBZA1。结果表明,pH 7.5、30℃和接种体积比6%是生物降解的最佳条件。初始浓度为50mg/L的DEP可在24小时内被USTBZA1菌株完全生物降解,符合Gompertz模型。基于Q-TOF LC/MS分析,单乙基邻苯二甲酸酯(MEP)和邻苯二甲酸(PA)被鉴定为USTBZA1对DEP生物降解的代谢产物。此外,对Comamonas sp. USTBZA1的全基因组进行了分析,以阐明USTBZA1对PAEs生物降解的分子机制。USTBZA1分别有3个和41个编码酯酶/芳基酯酶和水解酶的基因,两个基因区域(34512和4253)负责将PA转化为原儿茶酸(PCA),两个基因区域(CBAIKJ)参与PCA代谢。这些结果证实Comamonas sp. USTBZA1在DEP生物修复中具有潜在应用价值。
在线版本包含可在10.1007/s13205-023-03736-3获取的补充材料。