Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
J Chem Inf Model. 2023 Sep 25;63(18):5823-5833. doi: 10.1021/acs.jcim.3c01080. Epub 2023 Sep 8.
Understanding the mechanism of action of the antimicrobial peptide (AMP) in terms of its structure and energetics is the key to designing new potent and selective AMPs. Recently, we reported a membranolytic 14-residue-long lysine-rich cationic antimicrobial peptide (LL-14: NH-LKWLKKLLKWLKKL-CONH) against , , and , which is limited by cytotoxicity and expected to undergo facile protease degradation. Aliphatic side-chain-length modification of the cationic amino-acid residues (Lys and Arg) is a popular strategy for designing protease-resistant AMPs. However, the effect of the peptide side-chain length modifications on the membrane binding affinity and its relation to the atomic structure remain an unsolved problem. We report computer simulations that quantitatively calculated the difference in peptide binding affinity to membrane-mimetic-bilayer models (bacterial: 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) bilayer and mammalian: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer) upon decreasing or increasing the spacer length of the cationic lysine residues of LL-14 (as well as their arginine analogues). We show that the peptide/bilayer interaction energetics varies drastically in response to spacer length modification. The strength of peptide discrimination depends strongly on the nature of the bilayer (bacterial or mammalian mimetic model). An increase in the lysine spacer length by one carbon (i.e., homolysine analogue of LL-14) is weakly/strongly disfavored by the bacterial/mammalian-membrane-mimetic bilayer. Recently, we have demonstrated an excellent correlation between the antimicrobial activity of the membranolytic cationic peptides and their binding affinity to membrane-mimetic-bilayer models. Thus, the homolysine analogue of LL-14 is a promising noncytotoxic AMP with conserved activity. On the other hand, homoarginine analogue (arginine spacer length increment by a single carbon) was preferred by both the bacteria and the mammalian mimetic bilayers and displayed the strongest affinity for the former among the peptides studied in this work. Thus, the promising most potent homoarginine analogue is likely to be cytotoxic. Shortening the Lys/Arg side chain to a three-carbon spacer (Dab/Agb) improves the binding affinity to bacterial and mammalian-membrane-mimetic bilayers. Arginine and arginine-derivative peptides exhibited stronger binding affinity to the bilayers relative to the lysine analogue. The results provide a plausible explanation to the previous experimental observations, viz., superior antimicrobial activity of the arginine peptides relative to Lys peptides and the improvement of antimicrobial activity upon substitution of Lys with Dab in the cationic peptides. The simulations revealed that the small change in the peptide hydrophobicity by Lys/Arg spacer length modification could drastically alter the energetics of peptide/bilayer binding by fine-tuning the electrostatic interactions. The energetics underlying the peptide selectivity by simple membrane-mimetic bilayer models may be beneficial for designing new selective and protease-resistant AMPs.
理解抗菌肽(AMP)的作用机制,包括其结构和能量学,是设计新型有效和选择性 AMP 的关键。最近,我们报道了一种具有膜溶解作用的 14 个残基长赖氨酸丰富的阳离子抗菌肽(LL-14:NH-LKWLKKLLKWLKKL-CONH),它针对 、 、 ,但由于细胞毒性而受到限制,预计易受蛋白酶降解。对阳离子氨基酸残基(赖氨酸和精氨酸)的侧链长度修饰是设计抗蛋白酶 AMP 的常用策略。然而,肽侧链长度修饰对膜结合亲和力的影响及其与原子结构的关系仍然是一个悬而未决的问题。我们报告了计算机模拟,定量计算了 LL-14 的阳离子赖氨酸残基的间隔长度减小或增加时,肽与膜模拟双层模型(细菌:1-棕榈酰-2-油酰基磷脂酰乙醇胺(POPE)/1-棕榈酰-2-油酰基磷脂酰甘油(POPG)双层和哺乳动物:1-棕榈酰-2-油酰基磷脂酰胆碱(POPC)双层)结合亲和力的差异(以及它们的精氨酸类似物)。我们表明,肽/双层相互作用的能量学在响应间隔长度修饰时会发生剧烈变化。肽的选择性取决于双层的性质(细菌或哺乳动物模拟模型)。赖氨酸间隔长度增加一个碳原子(即 LL-14 的同赖氨酸类似物)在细菌/哺乳动物膜模拟双层中受到弱/强排斥。最近,我们已经证明了溶胞阳离子肽的抗菌活性与其与膜模拟双层模型的结合亲和力之间存在极好的相关性。因此,LL-14 的同赖氨酸类似物是一种具有保守活性的有前途的非细胞毒性 AMP。另一方面,同精氨酸类似物(精氨酸间隔长度增加一个碳原子)被细菌和哺乳动物模拟双层所偏爱,并且在本研究中研究的肽中,它对前者表现出最强的亲和力。因此,有前途的最有效力的同精氨酸类似物可能具有细胞毒性。将赖氨酸/精氨酸侧链缩短至三个碳原子(Dab/Agb)可提高与细菌和哺乳动物膜模拟双层的结合亲和力。与赖氨酸类似物相比,精氨酸和精氨酸衍生物肽对双层具有更强的结合亲和力。这些结果为先前的实验观察结果提供了合理的解释,即与赖氨酸肽相比,精氨酸肽具有更强的抗菌活性,并且在阳离子肽中用 Dab 取代赖氨酸可提高抗菌活性。模拟表明,通过赖氨酸/精氨酸间隔长度修饰改变肽的疏水性,可以通过微调静电相互作用来极大地改变肽/双层结合的能量学。通过简单的膜模拟双层模型确定肽的选择性的能量学可能有助于设计新型选择性和抗蛋白酶 AMP。