The Netherlands Organization for Applied Scientific Research, TNO, Leiden, Netherlands.
Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
Cochrane Database Syst Rev. 2023 Sep 11;9(9):CD010639. doi: 10.1002/14651858.CD010639.pub2.
Shift work is associated with insufficient sleep, which can compromise worker alertness with ultimate effects on occupational health and safety. Adapting shift work schedules may reduce adverse occupational outcomes.
To assess the effects of shift schedule adaptation on sleep quality, sleep duration, and sleepiness among shift workers.
We searched CENTRAL, PubMed, Embase, and eight other databases on 13 December 2020, and again on 20 April 2022, applying no language restrictions.
We included randomised controlled trials (RCTs) and non-RCTs, including controlled before-after (CBA) trials, interrupted time series, and cross-over trials. Eligible trials evaluated any of the following shift schedule components. • Permanency of shifts • Regularity of shift changes • Direction of shift rotation • Speed of rotation • Shift duration • Timing of start of shifts • Distribution of shift schedule • Time off between shifts • Split shifts • Protected sleep • Worker participation We included studies that assessed sleep quality off-shift, sleep duration off-shift, or sleepiness during shifts.
Two review authors independently screened the titles and abstracts of the records recovered by the search, read through the full-text articles of potentially eligible studies, and extracted data. We assessed the risk of bias of included studies using the Cochrane risk of bias tool, with specific additional domains for non-randomised and cluster-randomised studies. For all stages, we resolved any disagreements by consulting a third review author. We presented the results by study design and combined clinically homogeneous studies in meta-analyses using random-effects models. We assessed the certainty of the evidence with GRADE.
We included 11 studies with a total of 2125 participants. One study was conducted in a laboratory setting and was not considered for drawing conclusions on intervention effects. The included studies investigated different and often multiple changes to shift schedule, and were heterogeneous with respect to outcome measurement. Forward versus backward rotation Three CBA trials (561 participants) investigated the effects of forward rotation versus backward rotation. Only one CBA trial provided sufficient data for the quantitative analysis; it provided very low-certainty evidence that forward rotation compared with backward rotation did not affect sleep quality measured with the Basic Nordic Sleep Questionnaire (BNSQ; mean difference (MD) -0.20 points, 95% confidence interval (CI) -2.28 to 1.89; 62 participants) or sleep duration off-shift (MD -0.21 hours, 95% CI -3.29 to 2.88; 62 participants). However, there was also very low-certainty evidence that forward rotation reduced sleepiness during shifts measured with the BNSQ (MD -1.24 points, 95% CI -2.24 to -0.24; 62 participants). Faster versus slower rotation Two CBA trials and one non-randomised cross-over trial (341 participants) evaluated faster versus slower shift rotation. We were able to meta-analyse data from two studies. There was low-certainty evidence of no difference in sleep quality off-shift (standardised mean difference (SMD) -0.01, 95% CI -0.26 to 0.23) and very low-certainty evidence that faster shift rotation reduced sleep duration off-shift (SMD -0.26, 95% CI -0.51 to -0.01; 2 studies, 282 participants). The SMD for sleep duration translated to an MD of 0.38 hours' less sleep per day (95% CI -0.74 to -0.01). One study provided very low-certainty evidence that faster rotations decreased sleepiness during shifts measured with the BNSQ (MD -1.24 points, 95% CI -2.24 to -0.24; 62 participants). Limited shift duration (16 hours) versus unlimited shift duration Two RCTs (760 participants) evaluated 80-hour workweeks with maximum daily shift duration of 16 hours versus workweeks without any daily shift duration limits. There was low-certainty evidence that the 16-hour limit increased sleep duration off-shift (SMD 0.50, 95% CI 0.21 to 0.78; which translated to an MD of 0.73 hours' more sleep per day, 95% CI 0.30 to 1.13; 2 RCTs, 760 participants) and moderate-certainty evidence that the 16-hour limit reduced sleepiness during shifts, measured with the Karolinska Sleepiness Scale (SMD -0.29, 95% CI -0.44 to -0.14; which translated to an MD of 0.37 fewer points, 95% CI -0.55 to -0.17; 2 RCTs, 716 participants). Shorter versus longer shifts One RCT, one CBA trial, and one non-randomised cross-over trial (692 participants) evaluated shorter shift duration (eight to 10 hours) versus longer shift duration (two to three hours longer). There was very low-certainty evidence of no difference in sleep quality (SMD -0.23, 95% CI -0.61 to 0.15; which translated to an MD of 0.13 points lower on a scale of 1 to 5; 2 studies, 111 participants) or sleep duration off-shift (SMD 0.18, 95% CI -0.17 to 0.54; which translated to an MD of 0.26 hours' less sleep per day; 2 studies, 121 participants). The RCT and the non-randomised cross-over study found that shorter shifts reduced sleepiness during shifts, while the CBA study found no effect on sleepiness. More compressed versus more spread out shift schedules One RCT and one CBA trial (346 participants) evaluated more compressed versus more spread out shift schedules. The CBA trial provided very low-certainty evidence of no difference between the groups in sleep quality off-shift (MD 0.31 points, 95% CI -0.53 to 1.15) and sleep duration off-shift (MD 0.52 hours, 95% CI -0.52 to 1.56).
AUTHORS' CONCLUSIONS: Forward and faster rotation may reduce sleepiness during shifts, and may make no difference to sleep quality, but the evidence is very uncertain. Very low-certainty evidence indicated that sleep duration off-shift decreases with faster rotation. Low-certainty evidence indicated that on-duty workweeks with shift duration limited to 16 hours increases sleep duration, with moderate-certainty evidence for minimal reductions in sleepiness. Changes in shift duration and compression of workweeks had no effect on sleep or sleepiness, but the evidence was of very low-certainty. No evidence is available for other shift schedule changes. There is a need for more high-quality studies (preferably RCTs) for all shift schedule interventions to draw conclusions on the effects of shift schedule adaptations on sleep and sleepiness in shift workers.
轮班工作与睡眠不足有关,这会影响工人警觉性,最终对职业健康和安全产生影响。调整轮班工作时间表可能会减少不良的职业后果。
评估轮班工作时间表调整对轮班工人睡眠质量、睡眠时间和困倦程度的影响。
我们于 2020 年 12 月 13 日和 2022 年 4 月 20 日在 CENTRAL、PubMed、Embase 和其他 8 个数据库中进行了检索,没有语言限制。
我们纳入了随机对照试验(RCT)和非随机对照试验,包括对照前后(CBA)试验、间断时间序列和交叉试验。符合条件的试验评估了以下任何一种轮班工作时间表组成部分。•班次的永久性•班次变化的规律性•班次轮换的方向•轮换速度•班次持续时间•班次开始时间•班次安排的分布•班次之间的休息时间•分割班次•保护睡眠•工人参与我们纳入了评估轮班后睡眠质量、轮班后睡眠时间或轮班时困倦程度的研究。
两位综述作者独立筛选检索到的记录的标题和摘要,通读潜在合格研究的全文文章,并提取数据。我们使用 Cochrane 偏倚风险工具评估纳入研究的偏倚风险,对于非随机和整群随机研究,还有特定的额外领域。对于所有阶段,如果存在分歧,我们都会咨询第三位综述作者。我们通过研究设计呈现结果,并使用随机效应模型对具有临床同质性的研究进行荟萃分析。我们使用 GRADE 评估证据的确定性。
我们纳入了 11 项研究,共 2125 名参与者。一项研究是在实验室环境中进行的,不考虑对干预效果的结论。纳入的研究调查了不同且经常是多种轮班工作时间表的变化,并且在结果测量方面存在异质性。向前与向后旋转:三项 CBA 试验(561 名参与者)研究了向前旋转与向后旋转的效果。只有一项 CBA 试验提供了足够的数据进行定量分析;它提供了非常低确定性的证据,表明与向后旋转相比,向前旋转不会影响使用基本北欧睡眠问卷(BNSQ)测量的睡眠质量(MD -0.20 分,95%置信区间(CI)-2.28 至 1.89;62 名参与者)或轮班后睡眠时间(MD -0.21 小时,95%CI-3.29 至 2.88;62 名参与者)。然而,也有非常低确定性的证据表明,与向后旋转相比,向前旋转可以减少 BNSQ 测量的轮班时困倦程度(MD-1.24 分,95%CI-2.24 至 -0.24;62 名参与者)。更快与更慢的旋转:两项 CBA 试验和一项非随机交叉试验(341 名参与者)评估了更快与更慢的旋转。我们能够对两项研究进行荟萃分析。关于轮班后睡眠质量,有低确定性的证据表明没有差异(标准化均数差(SMD)-0.01,95%CI-0.26 至 0.23),非常低确定性的证据表明更快的旋转减少了轮班后睡眠时间(SMD -0.26,95%CI-0.51 至 -0.01;2 项研究,282 名参与者)。轮班后睡眠时间的 SMD 转化为每天少睡 0.38 小时(95%CI-0.74 至 -0.01)。一项研究提供了非常低确定性的证据,表明更快的旋转可以减少 BNSQ 测量的轮班时困倦程度(MD-1.24 分,95%CI-2.24 至 -0.24;62 名参与者)。有限的班次持续时间(16 小时)与无限的班次持续时间:两项 RCT(760 名参与者)评估了每天最大班次持续时间为 16 小时的 80 小时工作周与没有任何每日班次持续时间限制的工作周。有低确定性的证据表明,16 小时的限制增加了轮班后睡眠时间(SMD 0.50,95%CI 0.21 至 0.78;这转化为每天多睡 0.73 小时,95%CI 0.30 至 1.13;2 项 RCT,760 名参与者)和中度确定性的证据表明,16 小时的限制减少了轮班时的困倦程度,使用卡洛尔林斯卡睡眠量表(SMD-0.29,95%CI-0.44 至 -0.14;这转化为每天少睡 0.37 分,95%CI-0.55 至 -0.17;2 项 RCT,716 名参与者)。较短与较长的班次:一项 RCT、一项 CBA 试验和一项非随机交叉试验(692 名参与者)评估了较短的班次持续时间(8 至 10 小时)与较长的班次持续时间(长 2 至 3 小时)。有非常低确定性的证据表明,睡眠质量(SMD-0.23,95%CI-0.61 至 0.15;这转化为 1 到 5 分的量表上低 0.13 分;2 项研究,111 名参与者)或轮班后睡眠时间(SMD 0.18,95%CI-0.17 至 0.54;这转化为每天少睡 0.26 小时;2 项研究,121 名参与者)没有差异。RCT 和非随机交叉研究发现,较短的班次减少了轮班时的困倦程度,而 CBA 研究则没有发现对困倦程度的影响。更压缩与更分散的班次安排:一项 RCT 和一项 CBA 试验(346 名参与者)评估了更压缩与更分散的班次安排。CBA 试验提供了非常低确定性的证据,表明两组之间在轮班后睡眠质量(MD 0.31 分,95%CI-0.53 至 1.15)和轮班后睡眠时间(MD 0.52 小时,95%CI-0.52 至 1.56)方面没有差异。
向前和更快的旋转可能会减少轮班时的困倦程度,并且可能对睡眠质量没有影响,但证据非常不确定。非常低确定性的证据表明,更快的旋转会减少轮班后睡眠时间。低确定性的证据表明,工作周的轮班持续时间限制在 16 小时会增加睡眠时间,而中度确定性的证据表明,困倦程度会有轻微降低。轮班持续时间的变化和工作周的压缩对睡眠或困倦没有影响,但证据的确定性非常低。没有证据表明其他轮班时间表变化。需要更多高质量的研究(最好是 RCT)来评估所有轮班时间表干预措施对轮班工人睡眠和困倦的影响,以得出关于轮班时间表调整对睡眠和困倦的影响的结论。