Suppr超能文献

碳青霉烯类耐药肺炎克雷伯菌中耐药基因的鉴定用管道验证。

Pipeline validation for the identification of antimicrobial-resistant genes in carbapenem-resistant Klebsiella pneumoniae.

机构信息

Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil.

Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical da Universidade de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-903, Brazil.

出版信息

Sci Rep. 2023 Sep 14;13(1):15189. doi: 10.1038/s41598-023-42154-6.

Abstract

Antimicrobial-resistant Klebsiella pneumoniae is a global threat to healthcare and an important cause of nosocomial infections. Antimicrobial resistance causes prolonged treatment periods, high mortality rates, and economic impacts. Whole Genome Sequencing (WGS) has been used in laboratory diagnosis, but there is limited evidence about pipeline validation to parse generated data. Thus, the present study aimed to validate a bioinformatics pipeline for the identification of antimicrobial resistance genes from carbapenem-resistant K. pneumoniae WGS. Sequences were obtained from a publicly available database, trimmed, de novo assembled, mapped to the K. pneumoniae reference genome, and annotated. Contigs were submitted to different tools for bacterial (Kraken2 and SpeciesFinder) and antimicrobial resistance gene identification (ResFinder and ABRicate). We analyzed 201 K. pneumoniae genomes. In the bacterial identification by Kraken2, all samples were correctly identified, and in SpeciesFinder, 92.54% were correctly identified as K. pneumoniae, 6.96% erroneously as Pseudomonas aeruginosa, and 0.5% erroneously as Citrobacter freundii. ResFinder found a greater number of antimicrobial resistance genes than ABRicate; however, many were identified more than once in the same sample. All tools presented 100% repeatability and reproducibility and > 75% performance in other metrics. Kraken2 was more assertive in recognizing bacterial species, and SpeciesFinder may need improvements.

摘要

耐抗生素的肺炎克雷伯菌是对医疗保健的全球性威胁,也是医院感染的重要原因。抗生素耐药性导致治疗期延长、死亡率高和经济影响。全基因组测序(WGS)已用于实验室诊断,但关于解析生成数据的管道验证的证据有限。因此,本研究旨在验证一种用于从耐碳青霉烯肺炎克雷伯菌 WGS 中鉴定抗生素耐药基因的生物信息学管道。序列从公开可用的数据库中获得,进行修剪、从头组装、映射到肺炎克雷伯菌参考基因组并进行注释。将 contigs 提交给不同的工具进行细菌(Kraken2 和 SpeciesFinder)和抗生素耐药基因鉴定(ResFinder 和 ABRicate)。我们分析了 201 个肺炎克雷伯菌基因组。在 Kraken2 的细菌鉴定中,所有样本都被正确识别,在 SpeciesFinder 中,92.54%被正确识别为肺炎克雷伯菌,6.96%错误地识别为铜绿假单胞菌,0.5%错误地识别为弗氏柠檬酸杆菌。ResFinder 发现的抗生素耐药基因数量多于 ABRicate;然而,许多基因在同一样本中被多次识别。所有工具在其他指标上的重复性和再现性均>75%,性能>75%。Kraken2 在识别细菌物种方面更加自信,而 SpeciesFinder 可能需要改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dddb/10502106/4c274a58e94c/41598_2023_42154_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验