Suppr超能文献

神经胶质瘤干细胞的不同干性状态维持神经胶质瘤亚型,提示新的临床生物标志物和高疗效的定制化治疗方法。

Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies.

机构信息

StemGen SpA, Milan, Italy.

Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.

出版信息

J Exp Clin Cancer Res. 2023 Sep 21;42(1):244. doi: 10.1186/s13046-023-02811-0.

Abstract

BACKGROUND

Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM.

METHODS

Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis.

RESULTS

Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response.

CONCLUSIONS

In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.

摘要

背景

胶质母细胞瘤(GBM)是胶质瘤中最恶性的一种,其致死率不可避免。阐明这种肿瘤的生理学和调控机制对于揭示新的靶标和有效的治疗方法是必要的。新兴的概念表明,胶质母细胞瘤干细胞(GSCs)的一小部分亚群负责肿瘤发生,代表了 GBM 中创新治疗的真正目标。

方法

在这里,我们从一大组 GBM 患者中分离并建立了功能稳定且稳定扩增的 GSCs 系。通过方差分析和 Fisher 精确检验,对 GBM 组织及其衍生 GSCs 的分子、功能和抗原景观进行了全面的基因组和转录组特征分析。通过比较时间,在体外和体内,通过分层线性模型进行重复测量和 Kaplan-Meier 方法,描绘了 GSCs 的生理病理特征。通过分类树和患者生存分析,确定了候选生物标志物在区分 GBM 患者分类中的性能。

结果

这里,不同的生物标志物特征以及异常的功能程序被证明可以将 GBM 患者及其兄弟姐妹 GSCs 群体分为 TCGA 聚类。重要的是,GSCs 细胞随着时间的推移完全类似于其起源患者的分子特征。此外,我们指出了在 GBM 分类中存在不同的 GSCs 亚群,它们内在地具有不同的自我更新和肿瘤形成潜力。特别是,与更成熟、相对增殖缓慢的间充质和神经前细胞相比,经典 GSCs 具有更多未分化的生物学特征,增强的扩增和克隆能力,可能具有更高的外渗或体内浸润潜力。重要的是,DCX 和 EGFR 标志物的组合,在 GSCs 池中有选择性富集,几乎可以准确预测 GBM 患者的聚类及其生存和药物反应。

结论

在这项研究中,我们报告说,不同的 GSCs 池的固有富集是 GBM 患者功能聚类之间变异性的基础。我们发现了两个选择性表达的新的功能生物标志物,能够区分 GBM 患者的分层、生存和药物反应,为确定患者个体化的诊断和预后策略奠定了基础,最重要的是,为设计适合患者的治疗方案奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b9e/10512479/23f872102314/13046_2023_2811_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验