Suppr超能文献

表示蛋白质的多种构象状态的结构。

Representing structures of the multiple conformational states of proteins.

机构信息

Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

出版信息

Curr Opin Struct Biol. 2023 Dec;83:102703. doi: 10.1016/j.sbi.2023.102703. Epub 2023 Sep 28.

Abstract

Biomolecules exhibit dynamic behavior that single-state models of their structures cannot fully capture. We review some recent advances for investigating multiple conformations of biomolecules, including experimental methods, molecular dynamics simulations, and machine learning. We also address the challenges associated with representing single- and multiple-state models in data archives, with a particular focus on NMR structures. Establishing standardized representations and annotations will facilitate effective communication and understanding of these complex models to the broader scientific community.

摘要

生物分子表现出动态行为,其结构的单态模型无法完全捕捉到这些行为。我们回顾了一些研究生物分子多种构象的最新进展,包括实验方法、分子动力学模拟和机器学习。我们还讨论了在数据档案中表示单态和多态模型所面临的挑战,特别关注 NMR 结构。建立标准化的表示和注释将有助于更广泛的科学界有效沟通和理解这些复杂模型。

相似文献

1
Representing structures of the multiple conformational states of proteins.
Curr Opin Struct Biol. 2023 Dec;83:102703. doi: 10.1016/j.sbi.2023.102703. Epub 2023 Sep 28.
2
Mapping protein conformational energy landscapes using NMR and molecular simulation.
Chemphyschem. 2013 Sep 16;14(13):3046-58. doi: 10.1002/cphc.201300377. Epub 2013 May 23.
4
Machine Learning Generation of Dynamic Protein Conformational Ensembles.
Molecules. 2023 May 12;28(10):4047. doi: 10.3390/molecules28104047.
6
Protein flexibility: multiple molecular dynamics simulations of insulin chain B.
Biophys Chem. 2006 Jan 20;119(2):146-57. doi: 10.1016/j.bpc.2005.08.002. Epub 2005 Aug 29.
7
Integrative approaches for characterizing protein dynamics: NMR, CryoEM, and computer simulations.
Curr Opin Struct Biol. 2024 Feb;84:102736. doi: 10.1016/j.sbi.2023.102736. Epub 2023 Dec 3.
9
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications.
Int J Mol Sci. 2019 Aug 1;20(15):3774. doi: 10.3390/ijms20153774.
10
Validating clustering of molecular dynamics simulations using polymer models.
BMC Bioinformatics. 2011 Nov 14;12:445. doi: 10.1186/1471-2105-12-445.

引用本文的文献

1
Modeling Alternative Conformational States in CASP16.
bioRxiv. 2025 Sep 2:2025.09.02.673835. doi: 10.1101/2025.09.02.673835.
2
AlphaFold prediction of structural ensembles of disordered proteins.
Nat Commun. 2025 Feb 14;16(1):1632. doi: 10.1038/s41467-025-56572-9.
4
Explaining Conformational Diversity in Protein Families through Molecular Motions.
Sci Data. 2024 Jul 10;11(1):752. doi: 10.1038/s41597-024-03524-5.
6
The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins.
Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.
8
Restraint validation of biomolecular structures determined by NMR in the Protein Data Bank.
Structure. 2024 Jun 6;32(6):824-837.e1. doi: 10.1016/j.str.2024.02.011. Epub 2024 Mar 14.

本文引用的文献

1
Automated multiconformer model building for X-ray crystallography and cryo-EM.
Elife. 2024 Jun 21;12:RP90606. doi: 10.7554/eLife.90606.
2
OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization.
Nat Methods. 2024 Aug;21(8):1514-1524. doi: 10.1038/s41592-024-02272-z. Epub 2024 May 14.
3
Refinement of multiconformer ensemble models from multi-temperature X-ray diffraction data.
Methods Enzymol. 2023;688:223-254. doi: 10.1016/bs.mie.2023.06.009. Epub 2023 Jul 27.
4
Design of stimulus-responsive two-state hinge proteins.
Science. 2023 Aug 18;381(6659):754-760. doi: 10.1126/science.adg7731. Epub 2023 Aug 17.
5
Paramagnetic NMR restraints for the characterization of protein structural rearrangements.
Curr Opin Struct Biol. 2023 Jun;80:102595. doi: 10.1016/j.sbi.2023.102595. Epub 2023 Apr 17.
6
Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning.
Nat Biotechnol. 2023 Dec;41(12):1810-1819. doi: 10.1038/s41587-023-01704-z. Epub 2023 Mar 20.
7
Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science. 2023 Mar 17;379(6637):1123-1130. doi: 10.1126/science.ade2574. Epub 2023 Mar 16.
8
Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties.
Front Mol Biosci. 2023 Feb 16;10:1121962. doi: 10.3389/fmolb.2023.1121962. eCollection 2023.
9
Chasing long-range evolutionary couplings in the AlphaFold era.
Biopolymers. 2023 Mar;114(3):e23530. doi: 10.1002/bip.23530. Epub 2023 Feb 8.
10
Combining small angle X-ray scattering (SAXS) with protein structure predictions to characterize conformations in solution.
Methods Enzymol. 2023;678:351-376. doi: 10.1016/bs.mie.2022.09.023. Epub 2022 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验