Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden.
Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany.
Cell Chem Biol. 2023 Dec 21;30(12):1634-1651.e6. doi: 10.1016/j.chembiol.2023.09.003. Epub 2023 Oct 4.
Drug-induced phospholipidosis (DIPL), characterized by excessive accumulation of phospholipids in lysosomes, can lead to clinical adverse effects. It may also alter phenotypic responses in functional studies using chemical probes. Therefore, robust methods are needed to predict and quantify phospholipidosis (PL) early in drug discovery and in chemical probe characterization. Here, we present a versatile high-content live-cell imaging approach, which was used to evaluate a chemogenomic and a lysosomal modulation library. We trained and evaluated several machine learning models using the most comprehensive set of publicly available compounds and interpreted the best model using SHapley Additive exPlanations (SHAP). Analysis of high-quality chemical probes extracted from the Chemical Probes Portal using our algorithm revealed that closely related molecules, such as chemical probes and their matched negative controls can differ in their ability to induce PL, highlighting the importance of identifying PL for robust target validation in chemical biology.
药物诱导的磷脂蓄积症(DIPL)的特征是溶酶体中磷脂的过度积累,可导致临床不良反应。它还可能改变使用化学探针进行功能研究中的表型反应。因此,在药物发现早期和化学探针表征中需要有强大的方法来预测和量化磷脂蓄积症(PL)。在这里,我们提出了一种多功能的高内涵活细胞成像方法,该方法用于评估化学基因组学和溶酶体调节文库。我们使用最全面的公开化合物数据集训练和评估了几个机器学习模型,并使用 SHapley Additive exPlanations (SHAP) 解释了最佳模型。使用我们的算法分析从 Chemical Probes Portal 中提取的高质量化学探针,发现化学探针及其匹配的阴性对照等密切相关的分子在诱导 PL 的能力上可能存在差异,这突出了确定 PL 的重要性,以在化学生物学中进行稳健的靶标验证。