Suppr超能文献

基于联合图净化的医学联邦学习用于噪声标签学习。

Medical federated learning with joint graph purification for noisy label learning.

机构信息

Centre for Artificial Intelligence and Robotics (CAIR), Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.

Department of Electrical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region of China.

出版信息

Med Image Anal. 2023 Dec;90:102976. doi: 10.1016/j.media.2023.102976. Epub 2023 Oct 4.

Abstract

In terms of increasing privacy issues, Federated Learning (FL) has received extensive attention in medical imaging. Through collaborative training, FL can produce superior diagnostic models with global knowledge, while preserving private data locally. In practice, medical diagnosis suffers from intra-/inter-observer variability, thus label noise is inevitable in dataset preparation. Different from existing studies on centralized datasets, the label noise problem in FL scenarios confronts more challenges, due to data inaccessibility and even noise heterogeneity. In this work, we propose a federated framework with joint Graph Purification (FedGP) to address the label noise in FL through server and clients collaboration. Specifically, to overcome the impact of label noise on local training, we first devise a noisy graph purification on the client side to generate reliable pseudo labels by progressively expanding the purified graph with topological knowledge. Then, we further propose a graph-guided negative ensemble loss to exploit the topology of the client-side purified graph with robust complementary supervision against label noise. Moreover, to address the FL label noise with data silos, we propose a global centroid aggregation on the server side to produce a robust classifier with global knowledge, which can be optimized collaboratively in the FL framework. Extensive experiments are conducted on endoscopic and pathological images with the comparison under the homogeneous, heterogeneous, and real-world label noise for medical FL. Among these diverse noisy FL settings, our FedGP framework significantly outperforms denoising and noisy FL state-of-the-arts by a large margin. The source code is available at https://github.com/CUHK-AIM-Group/FedGP.

摘要

在隐私问题日益严重的情况下,联邦学习(FL)在医学成像领域受到了广泛关注。通过协作训练,FL 可以利用全局知识生成卓越的诊断模型,同时在本地保留私有数据。在实践中,医学诊断存在着观察者内/观察者间的可变性,因此在数据集准备过程中标签噪声是不可避免的。与集中式数据集的现有研究不同,FL 场景中的标签噪声问题面临着更多的挑战,这是由于数据不可访问甚至噪声异质性。在这项工作中,我们提出了一个具有联合图净化(FedGP)的联邦框架,通过服务器和客户端的协作来解决 FL 中的标签噪声问题。具体来说,为了克服标签噪声对本地训练的影响,我们首先在客户端设计了一个带有拓扑知识的噪声图净化方法,通过逐步扩展净化图来生成可靠的伪标签。然后,我们进一步提出了一个基于图的负样本集损失,利用客户端净化图的拓扑结构,通过稳健的互补监督来对抗标签噪声。此外,为了解决带有数据孤岛的 FL 标签噪声问题,我们在服务器端提出了一种全局质心聚合方法,通过利用全局知识来生成一个稳健的分类器,该分类器可以在 FL 框架中协同优化。我们在具有同质性、异质性和真实世界标签噪声的内窥镜和病理图像上进行了广泛的实验,并在这些不同的噪声 FL 设置下进行了比较。在这些多样化的噪声 FL 设置中,我们的 FedGP 框架显著优于去噪和噪声 FL 的现有方法,优势明显。代码可在 https://github.com/CUHK-AIM-Group/FedGP 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验