School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States.
School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States.
J Colloid Interface Sci. 2024 Jan;653(Pt B):1763-1774. doi: 10.1016/j.jcis.2023.09.188. Epub 2023 Oct 1.
The emergence of antibiotic-resistant bacteria poses a pressing threat to global health and is a leading cause of healthcare-related morbidity and mortality. Herein, we report the fabrication of medical-grade polymers incorporated with a dual-action S-nitroso-N-acetylpenicillamine-functionalized ampicillin (SNAPicillin) conjugated molecule through a solvent evaporation process. The resulting SNAPicillin-incorporated polymer materials act as broad-spectrum antibacterial surfaces that improve the administration efficacy of conventional antibiotics through the targeted release of both nitric oxide and ampicillin. The polymer surfaces were characterized by scanning electron microscopy and static contact angle measurements. The nitric oxide (NO) release profile and diffusion of SNAPicillin from polymers were quantified using a chemiluminescence-based nitric oxide analyzer (NOA) and ultraviolet-visible (UV-vis) spectroscopy. As a result, the films had up to 2.96 × 10 mol cm of total NO released within 24 hr. In addition, >79 % of the SNAPicillin reservoir was preserved in the polymers after 24 hr of incubation in the physiological environment, indicating their longer-term NO release ability and therapeutic window for antibacterial effects. The SNAPicillin-incorporated polymers reduced the viability of adhered bacteria in culture, with >95 % reduction found against clinically relevant strains of Staphylococcus aureus (S. aureus). Furthermore, SNAPicillin-modified surfaces did not elicit a cytotoxic effect toward 3T3 mouse fibroblast cells, supporting the material's biocompatibility in vitro. These results indicate that the complementary effects of NO-release and ampicillin in SNAPicillin-eluting polymers can enhance the properties of commonly infected medical device surfaces for antibacterial purposes.
抗生素耐药菌的出现对全球健康构成了紧迫威胁,是导致与医疗保健相关的发病率和死亡率的主要原因。在此,我们报告了通过溶剂蒸发工艺制备的医用级聚合物,其中掺入了双功能 S-亚硝基-N-乙酰青霉胺功能化氨苄西林(SNAPicillin)缀合物分子。所得的 SNAPicillin 掺入聚合物材料作为广谱抗菌表面,通过靶向释放一氧化氮和氨苄西林来提高常规抗生素的给药效果。通过扫描电子显微镜和静态接触角测量对聚合物表面进行了表征。使用基于化学发光的一氧化氮分析仪(NOA)和紫外可见(UV-vis)光谱法对聚合物中一氧化氮(NO)的释放曲线和 SNAPicillin 的扩散进行了定量。结果,在 24 小时内,薄膜中总共释放了 2.96×10 mol cm 的一氧化氮。此外,在生理环境中孵育 24 小时后,聚合物中仍保留了超过 79%的 SNAPicillin 储库,表明其具有更长的 NO 释放能力和抗菌作用的治疗窗口。掺入 SNAPicillin 的聚合物降低了培养物中附着细菌的活力,对临床相关金黄色葡萄球菌(S. aureus)菌株的减少率超过 95%。此外,SNAPicillin 改性表面对 3T3 小鼠成纤维细胞没有细胞毒性作用,支持了其在体外的生物相容性。这些结果表明,NO 释放和 SNAPicillin 洗脱聚合物中氨苄西林的互补作用可以增强常见感染医疗器械表面的抗菌性能。