Suppr超能文献

GeoDILI:基于图神经网络的分子几何表示的药物性肝损伤预测的稳健且可解释模型。

GeoDILI: A Robust and Interpretable Model for Drug-Induced Liver Injury Prediction Using Graph Neural Network-Based Molecular Geometric Representation.

机构信息

Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China.

出版信息

Chem Res Toxicol. 2023 Nov 20;36(11):1717-1730. doi: 10.1021/acs.chemrestox.3c00199. Epub 2023 Oct 15.

Abstract

Drug-induced liver injury (DILI) is a significant cause of drug failure and withdrawal due to liver damage. Accurate prediction of hepatotoxic compounds is crucial for safe drug development. Several DILI prediction models have been published, but they are built on different data sets, making it difficult to compare model performance. Moreover, most existing models are based on molecular fingerprints or descriptors, neglecting molecular geometric properties and lacking interpretability. To address these limitations, we developed GeoDILI, an interpretable graph neural network that uses a molecular geometric representation. First, we utilized a geometry-based pretrained molecular representation and optimized it on the DILI data set to improve predictive performance. Second, we leveraged gradient information to obtain high-precision atomic-level weights and deduce the dominant substructure. We benchmarked GeoDILI against recently published DILI prediction models, as well as popular GNN models and fingerprint-based machine learning models using the same data set, showing superior predictive performance of our proposed model. We applied the interpretable method in the DILI data set and derived seven precise and mechanistically elucidated structural alerts. Overall, GeoDILI provides a promising approach for accurate and interpretable DILI prediction with potential applications in drug discovery and safety assessment. The data and source code are available at GitHub repository (https://github.com/CSU-QJY/GeoDILI).

摘要

药物性肝损伤 (DILI) 是导致药物因肝损伤而失效和撤市的重要原因。准确预测肝毒性化合物对于安全药物开发至关重要。已经发表了几种 DILI 预测模型,但它们是基于不同的数据集构建的,因此很难比较模型性能。此外,大多数现有的模型都是基于分子指纹或描述符,忽略了分子几何性质,缺乏可解释性。为了解决这些限制,我们开发了 GeoDILI,这是一种可解释的图神经网络,它使用分子几何表示。首先,我们利用基于几何的预训练分子表示,并在 DILI 数据集上对其进行优化,以提高预测性能。其次,我们利用梯度信息获得高精度的原子级权重,并推断出主要的亚结构。我们使用相同的数据集将 GeoDILI 与最近发表的 DILI 预测模型以及流行的 GNN 模型和基于指纹的机器学习模型进行了基准测试,结果表明我们提出的模型具有优越的预测性能。我们在 DILI 数据集上应用了可解释方法,并推导出了七个精确且具有机制解释的结构警报。总的来说,GeoDILI 为准确和可解释的 DILI 预测提供了一种有前途的方法,具有在药物发现和安全性评估中的潜在应用。数据和源代码可在 GitHub 存储库 (https://github.com/CSU-QJY/GeoDILI) 中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验