Suppr超能文献

红平红球菌 P2 适应金属(类)涉及新颖的砷抗性基因和机制。

Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms.

机构信息

College of Tea and Food, Wuyi University, Wuyishan, China.

Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, China.

出版信息

J Hazard Mater. 2024 Jan 15;462:132796. doi: 10.1016/j.jhazmat.2023.132796. Epub 2023 Oct 16.

Abstract

Arsenic is a ubiquitous environmental toxi substance that affects human health. Compared to inorganic arsenicals, reduced organoarsenicals are more toxic, and some of them are recognized as antibiotics, such as methylarsenite [MAs(III)] and arsinothricin (2-amino-4-(hydroxymethylarsinoyl)butanoate, or AST). To date, organoarsenicals such as MAs(V) and roxarsone [Rox(V)] are still used in agriculture and animal husbandry. How bacteria deal with both inorganic and organoarsenic species is unclear. Recently, we identified an environmental isolate Mucilaginibacter rubeus P2 that has adapted to high arsenic and antinomy levels by triplicating an arsR-mrarsU-arsN-arsC-(arsRhp)-hp-acr3-mrme1-mrme2gene cluster. Heterologous expression of mrarsM, mrarsU, mrme1 and mrme2, encoding putative arsenic resistance determinants, in the arsenic hypersensitive strain Escherichia coli AW3110 conferred resistance to As(III), As(V), MAs(III) or Rox(III). Our data suggest that metalloid exposure promotes plasticity in arsenic resistance systems, enhancing host organism adaptation to metalloid stress.

摘要

砷是一种普遍存在的环境毒物,会影响人类健康。与无机砷化合物相比,还原有机砷化合物毒性更高,其中一些被认为是抗生素,如甲基砷酸盐[MAs(III)]和砷硫菌素(2-氨基-4-(羟甲基砷酰基)丁酸盐,或 AST)。迄今为止,MAs(V)和罗克沙砷[Rox(V)]等有机砷化合物仍在农业和畜牧业中使用。细菌如何处理无机和有机砷化合物尚不清楚。最近,我们鉴定了一种环境分离株粘质沙雷氏菌 P2,它通过三倍扩增 arsR-mrarsU-arsN-arsC-(arsRhp)-hp-acr3-mrme1-mrme2 基因簇来适应高砷和抗砷水平。在砷敏感菌株 Escherichia coli AW3110 中异源表达编码潜在砷抗性决定因素的 mrarsM、mrarsU、mrme1 和 mrme2,赋予了对 As(III)、As(V)、MAs(III)或 Rox(III)的抗性。我们的数据表明,类金属暴露促进了砷抗性系统的可塑性,增强了宿主对类金属胁迫的适应能力。

相似文献

1
Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms.
J Hazard Mater. 2024 Jan 15;462:132796. doi: 10.1016/j.jhazmat.2023.132796. Epub 2023 Oct 16.
2
Efflux Transporter ArsK Is Responsible for Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite.
Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.01842-18. Print 2018 Dec 15.
3
A C⋅As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7701-6. doi: 10.1073/pnas.1403057111. Epub 2014 May 12.
5
Bifunctional protein ArsR contributes to arsenite methylation and resistance in Brevundimonas sp. M20.
BMC Microbiol. 2023 May 17;23(1):134. doi: 10.1186/s12866-023-02876-z.
6
ArsP: a methylarsenite efflux permease.
Mol Microbiol. 2015 Nov;98(4):625-35. doi: 10.1111/mmi.13145. Epub 2015 Aug 22.
8
ArsV and ArsW provide synergistic resistance to the antibiotic methylarsenite.
Environ Microbiol. 2021 Dec;23(12):7550-7562. doi: 10.1111/1462-2920.15817. Epub 2021 Oct 21.
9
Organoarsenical tolerance in Sphingobacterium wenxiniae, a bacterium isolated from activated sludge.
Environ Microbiol. 2022 Feb;24(2):762-771. doi: 10.1111/1462-2920.15599. Epub 2021 May 27.
10
Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria.
Environ Microbiol. 2022 Feb;24(2):752-761. doi: 10.1111/1462-2920.15488. Epub 2021 Apr 6.

本文引用的文献

1
Whole-Genome Sequence of Mucilaginibacter jinjuensis Strain KACC 16571.
Microbiol Resour Announc. 2023 Jun 20;12(6):e0026923. doi: 10.1128/mra.00269-23. Epub 2023 May 3.
2
Methylation of arsenic differs with substrates in Arcticibacter tournemirensis R1 from an As-contaminated paddy soil.
Sci Total Environ. 2022 Sep 10;838(Pt 4):156527. doi: 10.1016/j.scitotenv.2022.156527. Epub 2022 Jun 6.
4
ArsZ from Ensifer adhaerens ST2 is a novel methylarsenite oxidase.
Environ Microbiol. 2022 Jul;24(7):3013-3021. doi: 10.1111/1462-2920.15983. Epub 2022 Apr 18.
7
ArsV and ArsW provide synergistic resistance to the antibiotic methylarsenite.
Environ Microbiol. 2021 Dec;23(12):7550-7562. doi: 10.1111/1462-2920.15817. Epub 2021 Oct 21.
8
Antimicrobial Activity of Metals and Metalloids.
Annu Rev Microbiol. 2021 Oct 8;75:175-197. doi: 10.1146/annurev-micro-032921-123231. Epub 2021 Aug 3.
9
Organoarsenical tolerance in Sphingobacterium wenxiniae, a bacterium isolated from activated sludge.
Environ Microbiol. 2022 Feb;24(2):762-771. doi: 10.1111/1462-2920.15599. Epub 2021 May 27.
10
Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria.
Environ Microbiol. 2022 Feb;24(2):752-761. doi: 10.1111/1462-2920.15488. Epub 2021 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验