Suppr超能文献

基于心脏全血管模型的冠状动脉毛细血管渡越时间模拟。

Simulation of coronary capillary transit time based on full vascular model of the heart.

机构信息

Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.

The Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.

出版信息

Comput Methods Programs Biomed. 2024 Jan;243:107908. doi: 10.1016/j.cmpb.2023.107908. Epub 2023 Oct 31.

Abstract

Capillary transit time (CTT) is a fundamental determinant of gas exchange between blood and tissues in the heart and other organs. Despite advances in experimental techniques, it remains difficult to measure coronary CTT in vivo. Here, we developed a novel computational framework that couples coronary microcirculation with cardiac mechanics in a closed-loop system that enables prediction of hemodynamics in the entire coronary network, including arteries, veins, and capillaries. We also developed a novel "particle-tracking" approach for computing CTT where "virtual tracers" are individually tracked as they traverse the capillary network. Model predictions compare well with blood pressure and flow rate distributions in the arterial network reported in previous studies. Model predictions of transit times in the capillaries (1.21 ± 1.5 s) and entire coronary network (11.8 ± 1.8 s) also agree with measurements. We show that, with increasing coronary artery stenosis (as quantified by fractional flow reserve, FFR), intravascular pressure and flow rate downstream are reduced but remain non-stationary even at 100 % stenosis because some flow (∼3 %) is redistributed from the non-occluded to the occluded territories. Importantly, the model predicts that occlusion of a large artery results in higher CTT. For moderate stenosis (FFR > 0.6), the increase in CTT (from 1.21 s without stenosis to 2.23 s at FFR=0.6) is caused by a decrease in capillary flow rate. In severe stenosis (FFR = 0.1), the increase in CTT to 14.2 s is due to both a decrease in flow rate and an increase in path length taken by "virtual tracers" in the capillary network.

摘要

毛细血管渡越时间(CTT)是心脏和其他器官中血液与组织之间气体交换的基本决定因素。尽管实验技术取得了进步,但在体内测量冠状动脉 CTT 仍然很困难。在这里,我们开发了一种新的计算框架,该框架将冠状动脉微循环与心脏力学耦合在一个闭环系统中,从而能够预测整个冠状动脉网络中的血液动力学,包括动脉、静脉和毛细血管。我们还开发了一种新的“粒子追踪”方法来计算 CTT,其中“虚拟示踪剂”在穿过毛细血管网络时被单独追踪。模型预测与以前研究中报告的动脉网络中的血压和流量分布吻合良好。模型预测的毛细血管(1.21±1.5s)和整个冠状动脉网络(11.8±1.8s)的渡越时间也与测量值一致。我们表明,随着冠状动脉狭窄(以血流储备分数,FFR 来量化)的增加,下游的血管内压力和流量降低,但即使在 100%狭窄时仍保持非稳态,因为一些流量(约 3%)从非闭塞区重新分配到闭塞区。重要的是,该模型预测大血管闭塞会导致 CTT 增加。对于中度狭窄(FFR>0.6),CTT 的增加(从无狭窄时的 1.21s 增加到 FFR=0.6 时的 2.23s)是由于毛细血管流量减少所致。在严重狭窄(FFR=0.1)中,CTT 增加到 14.2s 是由于流量减少和毛细血管网络中“虚拟示踪剂”的路径长度增加所致。

相似文献

1
Simulation of coronary capillary transit time based on full vascular model of the heart.
Comput Methods Programs Biomed. 2024 Jan;243:107908. doi: 10.1016/j.cmpb.2023.107908. Epub 2023 Oct 31.
4
Machine Learning Identification Framework of Hemodynamics of Blood Flow in Patient-Specific Coronary Arteries with Abnormality.
J Cardiovasc Transl Res. 2023 Jun;16(3):722-737. doi: 10.1007/s12265-022-10339-5. Epub 2022 Nov 18.
8
Closed-loop geometric multi-scale heart-coronary artery model for the numerical calculation of fractional flow reserve.
Comput Methods Programs Biomed. 2021 Sep;208:106266. doi: 10.1016/j.cmpb.2021.106266. Epub 2021 Jul 6.

引用本文的文献

1
Computational assessment of blood lipid influence on hemodynamics in human retinal vessels.
Sci Rep. 2025 May 13;15(1):16542. doi: 10.1038/s41598-025-98767-6.
2
Computer model coupling hemodynamics and oxygen transport in the coronary capillary network: Pulsatile vs. non-pulsatile analysis.
Comput Methods Programs Biomed. 2025 Jan;258:108486. doi: 10.1016/j.cmpb.2024.108486. Epub 2024 Nov 8.
3
Rapid estimation of left ventricular contractility with a physics-informed neural network inverse modeling approach.
Artif Intell Med. 2024 Nov;157:102995. doi: 10.1016/j.artmed.2024.102995. Epub 2024 Oct 10.
4
Preconditioning with selective autoretroperfusion: and evidence of washout hypothesis.
Front Bioeng Biotechnol. 2024 May 10;12:1386713. doi: 10.3389/fbioe.2024.1386713. eCollection 2024.
5
Mechanisms of coronary sinus reducer for treatment of myocardial ischemia: in silico study.
J Appl Physiol (1985). 2024 May 1;136(5):1157-1169. doi: 10.1152/japplphysiol.00910.2023. Epub 2024 Mar 21.
6
Review of cardiac-coronary interaction and insights from mathematical modeling.
WIREs Mech Dis. 2024 May-Jun;16(3):e1642. doi: 10.1002/wsbm.1642. Epub 2024 Feb 5.

本文引用的文献

1
A novel method for calculating CTFFR based on the flow ratio between stenotic coronary and healthy coronary.
Comput Methods Programs Biomed. 2023 May;233:107469. doi: 10.1016/j.cmpb.2023.107469. Epub 2023 Mar 8.
2
The Comparative Method Based on Coronary Computed Tomography Angiography for Assessing the Hemodynamic Significance of Coronary Artery Stenosis.
Cardiovasc Eng Technol. 2023 Jun;14(3):364-379. doi: 10.1007/s13239-023-00658-2. Epub 2023 Mar 3.
3
A Closed-Loop Modeling Framework for Cardiac-to-Coronary Coupling.
Front Physiol. 2022 Feb 28;13:830925. doi: 10.3389/fphys.2022.830925. eCollection 2022.
5
In vitro study on the partitioning of red blood cells using a microchannel network.
Microvasc Res. 2022 Mar;140:104281. doi: 10.1016/j.mvr.2021.104281. Epub 2021 Dec 4.
6
Optimization of cardiac resynchronization therapy based on a cardiac electromechanics-perfusion computational model.
Comput Biol Med. 2022 Feb;141:105050. doi: 10.1016/j.compbiomed.2021.105050. Epub 2021 Nov 19.
7
Compressed vessels bias red blood cell partitioning at bifurcations in a hematocrit-dependent manner: Implications in tumor blood flow.
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). doi: 10.1073/pnas.2025236118. Epub 2021 Jun 17.
8
Role of coronary flow regulation and cardiac-coronary coupling in mechanical dyssynchrony associated with right ventricular pacing.
Am J Physiol Heart Circ Physiol. 2021 Mar 1;320(3):H1037-H1054. doi: 10.1152/ajpheart.00549.2020. Epub 2020 Dec 24.
9
Blood flow, capillary transit times, and tissue oxygenation: the centennial of capillary recruitment.
J Appl Physiol (1985). 2020 Dec 1;129(6):1413-1421. doi: 10.1152/japplphysiol.00537.2020. Epub 2020 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验