IEEE Trans Neural Syst Rehabil Eng. 2023;31:4481-4491. doi: 10.1109/TNSRE.2023.3331238. Epub 2023 Nov 14.
Accurate shoulder joint angle estimation is crucial for analyzing joint kinematics and kinetics across a spectrum of movement applications including in athletic performance evaluation, injury prevention, and rehabilitation. However, accurate IMU-based shoulder angle estimation is challenging and the specific influence of key error factors on shoulder angle estimation is unclear. We thus propose an analytical model based on quaternions and rotation vectors that decouples and quantifies the effects of two key error factors, namely sensor-to-segment misalignment and sensor orientation estimation error, on shoulder joint rotation error. To validate this model, we conducted experiments involving twenty-five subjects who performed five activities: yoga, golf, swimming, dance, and badminton. Results showed that improving sensor-to-segment misalignment along the segment's extension/flexion dimension had the most significant impact in reducing the magnitude of shoulder joint rotation error. Specifically, a 1° improvement in thorax and upper arm calibration resulted in a reduction of 0.40° and 0.57° in error magnitude. In comparison, improving IMU heading estimation was only roughly half as effective (0.23° per 1°). This study clarifies the relationship between shoulder angle estimation error and its contributing factors, and identifies effective strategies for improving these error factors. These findings have significant implications for enhancing the accuracy of IMU-based shoulder angle estimation, thereby facilitating advancements in IMU-based upper limb rehabilitation, human-machine interaction, and athletic performance evaluation.
准确的肩关节角度估计对于分析关节运动学和动力学至关重要,涵盖了广泛的运动应用,包括运动表现评估、损伤预防和康复。然而,基于惯性测量单元(IMU)的准确肩关节角度估计具有挑战性,并且关键误差因素对肩关节角度估计的具体影响尚不清楚。因此,我们提出了一种基于四元数和旋转矢量的分析模型,该模型可以分离并量化两个关键误差因素,即传感器与肢体的不匹配和传感器方向估计误差,对肩关节旋转误差的影响。为了验证该模型,我们进行了涉及 25 名受试者的实验,他们完成了瑜伽、高尔夫、游泳、舞蹈和羽毛球五项活动。结果表明,沿着肢体的伸展/弯曲方向改善传感器与肢体的不匹配对减小肩关节旋转误差的幅度影响最大。具体来说,胸部和上臂校准精度提高 1°,误差幅度分别减少 0.40°和 0.57°。相比之下,改善 IMU 航向估计的效果大致只有一半(每 1°提高 0.23°)。本研究阐明了肩关节角度估计误差与其影响因素之间的关系,并确定了改善这些误差因素的有效策略。这些发现对于提高基于 IMU 的肩关节角度估计的准确性具有重要意义,从而促进基于 IMU 的上肢康复、人机交互和运动表现评估的发展。