Suppr超能文献

重编程肿瘤相关巨噬细胞以竞争血管内内皮祖细胞并抑制肿瘤新生血管形成。

Reprogramming tumor-associated macrophages to outcompete endovascular endothelial progenitor cells and suppress tumor neoangiogenesis.

机构信息

Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.

Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Immunity. 2023 Nov 14;56(11):2555-2569.e5. doi: 10.1016/j.immuni.2023.10.010.

Abstract

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.

摘要

肿瘤通过诱导一种支持性环境来发展,这种环境的特征是异常的血管生成和肿瘤相关巨噬细胞(TAMs)的浸润。在乳腺癌的转基因模型中,我们发现 TAMs 定位于肿瘤实质中,并且比乳腺组织中的巨噬细胞小。TAMs 中代谢调节剂哺乳动物/雷帕霉素复合物 1(mTORC1)的活性较低,而 mTORC1 信号的负调节剂结节性硬化复合物 1(TSC1)在 TAMs 中的耗竭,以独立于适应性淋巴细胞的方式抑制肿瘤生长。虽然野生型 TAMs 表现出炎症和血管生成基因表达谱,但 TSC1 缺陷型 TAMs 具有促解决的表型。TSC1 缺陷型 TAMs 重新定位到血管周围龛位,耗尽表达蛋白 C 受体(PROCR)的血管内皮祖细胞,并纠正了高通透性的血管,导致肿瘤组织缺氧和癌细胞死亡。TSC1 缺陷型 TAMs 具有代谢活性,并在细胞竞争实验中有效消除表达 PROCR 的内皮细胞。因此,TAMs 表现出 TSC1 依赖性 mTORC1 低状态,增加 mTORC1 信号会促进促解决状态,从而抑制肿瘤生长,定义了一种可能被用于癌症免疫治疗的先天免疫肿瘤抑制途径。

相似文献

5
Reprogramming tumour-associated macrophages to outcompete cancer cells.
Nature. 2023 Jul;619(7970):616-623. doi: 10.1038/s41586-023-06256-5. Epub 2023 Jun 28.
6
mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19384-9. doi: 10.1073/pnas.0810584105. Epub 2008 Dec 3.
7
TSC1 controls IL-1β expression in macrophages via mTORC1-dependent C/EBPβ pathway.
Cell Mol Immunol. 2016 Sep;13(5):640-50. doi: 10.1038/cmi.2015.43. Epub 2015 May 25.
9
Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia.
Mol Cell Biol. 2011 May;31(9):1870-84. doi: 10.1128/MCB.01393-10. Epub 2011 Mar 7.
10
Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1.
Hum Mol Genet. 2014 Jul 15;23(14):3865-74. doi: 10.1093/hmg/ddu101. Epub 2014 Mar 5.

引用本文的文献

2
mTOR Signaling in Macrophages: All Depends on the Context.
Int J Mol Sci. 2025 Aug 6;26(15):7598. doi: 10.3390/ijms26157598.
3
Epithelial cells with high TOP2A expression promote cervical cancer progression by regulating the transcription factor FOXM1.
Front Oncol. 2025 Jun 16;15:1604960. doi: 10.3389/fonc.2025.1604960. eCollection 2025.
4
5
Nano-strategies for Targeting Tumor-Associated Macrophages in Cancer immunotherapy.
J Cancer. 2025 Mar 31;16(7):2261-2274. doi: 10.7150/jca.108194. eCollection 2025.
8
Innate immune cells in vascular lesions: mechanism and significance of diversified immune regulation.
Ann Med. 2025 Dec;57(1):2453826. doi: 10.1080/07853890.2025.2453826. Epub 2025 Jan 23.
9
Phosphoproteomic Profiling Reveals mTOR Signaling in Sustaining Macrophage Phagocytosis of Cancer Cells.
Cancers (Basel). 2024 Dec 19;16(24):4238. doi: 10.3390/cancers16244238.
10
The influence of endothelial metabolic reprogramming on the tumor microenvironment.
Oncogene. 2025 Jan;44(2):51-63. doi: 10.1038/s41388-024-03228-5. Epub 2024 Nov 20.

本文引用的文献

1
Reprogramming tumour-associated macrophages to outcompete cancer cells.
Nature. 2023 Jul;619(7970):616-623. doi: 10.1038/s41586-023-06256-5. Epub 2023 Jun 28.
2
Control of tumor-associated macrophage responses by nutrient acquisition and metabolism.
Immunity. 2023 Jan 10;56(1):14-31. doi: 10.1016/j.immuni.2022.12.003.
3
Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer.
Immunity. 2022 Nov 8;55(11):2044-2058.e5. doi: 10.1016/j.immuni.2022.10.002. Epub 2022 Oct 25.
4
Cell competition in development, homeostasis and cancer.
Nat Rev Mol Cell Biol. 2023 Mar;24(3):221-236. doi: 10.1038/s41580-022-00538-y. Epub 2022 Sep 29.
6
Tumor-associated macrophage heterogeneity is driven by tissue territories in breast cancer.
Cell Rep. 2022 May 24;39(8):110865. doi: 10.1016/j.celrep.2022.110865.
7
Tissue-resident FOLR2 macrophages associate with CD8 T cell infiltration in human breast cancer.
Cell. 2022 Mar 31;185(7):1189-1207.e25. doi: 10.1016/j.cell.2022.02.021. Epub 2022 Mar 23.
8
Resident vascular endothelial progenitor definition and function: the age of reckoning.
Angiogenesis. 2022 Feb;25(1):15-33. doi: 10.1007/s10456-021-09817-2. Epub 2021 Sep 9.
9
Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective.
Front Cell Dev Biol. 2021 Feb 16;9:642352. doi: 10.3389/fcell.2021.642352. eCollection 2021.
10
SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution.
Cell Metab. 2020 Dec 1;32(6):1063-1075.e7. doi: 10.1016/j.cmet.2020.11.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验