University Institute for Primary Care (IuMFE), University of Geneva, Geneva, Switzerland.
PLoS One. 2023 Nov 16;18(11):e0294562. doi: 10.1371/journal.pone.0294562. eCollection 2023.
We aimed to evaluate NamSor's performance in predicting the country of origin and ethnicity of individuals based on their first/last names.
We retrieved the name and country of affiliation of all authors of PubMed publications in 2021, affiliated with universities in the twenty-two countries whose researchers authored ≥1,000 medical publications and whose percentage of migrants was <2.5% (N = 88,699). We estimated with NamSor their most likely "continent of origin" (Asia/Africa/Europe), "country of origin" and "ethnicity". We also examined two other variables that we created: "continent#2" ("Europe" replaced by "Europe/America/Oceania") and "country#2" ("Spain" replaced by "Spain/Hispanic American country" and "Portugal" replaced by "Portugal/Brazil"). Using "country of affiliation" as a proxy for "country of origin", we calculated for these five variables the proportion of misclassifications (= errorCodedWithoutNA) and the proportion of non-classifications (= naCoded). We repeated the analyses with a subsample consisting of all results with inference accuracy ≥50%.
For the full sample and the subsample, errorCodedWithoutNA was 16.0% and 12.6% for "continent", 6.3% and 3.3% for "continent#2", 27.3% and 19.5% for "country", 19.7% and 11.4% for "country#2", and 20.2% and 14.8% for "ethnicity"; naCoded was zero and 18.0% for all variables, except for "ethnicity" (zero and 10.7%).
NamSor is accurate in determining the continent of origin, especially when using the modified variable (continent#2) and/or restricting the analysis to names with accuracy ≥50%. The risk of misclassification is higher with country of origin or ethnicity, but decreases, as with continent of origin, when using the modified variable (country#2) and/or the subsample.
我们旨在评估 NamSor 基于个人的名字预测其原籍国和种族的性能。
我们检索了 2021 年在 PubMed 出版物中发表文章的所有作者的姓名和所属国家,这些作者来自 22 个国家的大学,这些国家的研究人员发表了≥1000 篇医学论文,移民比例<2.5%(N=88699)。我们使用 NamSor 估计他们最可能的“原籍大陆”(亚洲/非洲/欧洲)、“原籍国”和“种族”。我们还检查了另外两个我们创建的变量:“大陆#2”(“欧洲”替换为“欧洲/美洲/大洋洲”)和“国家#2”(“西班牙”替换为“西班牙/拉美国家”和“葡萄牙”替换为“葡萄牙/巴西”)。我们使用“所属国家”作为“原籍国”的代理变量,计算了这五个变量的错误分类比例(=errorCodedWithoutNA)和未分类比例(=naCoded)。我们使用所有推断准确性≥50%的结果的子样本重复了这些分析。
对于整个样本和子样本,错误分类比例(=errorCodedWithoutNA)分别为“大陆”的 16.0%和 12.6%、“大陆#2”的 6.3%和 3.3%、“国家”的 27.3%和 19.5%、“国家#2”的 19.7%和 11.4%、以及“种族”的 20.2%和 14.8%;除了“种族”(零和 10.7%)外,所有变量的未分类比例(=naCoded)均为零和 18.0%。
NamSor 在确定原籍大陆方面是准确的,特别是在使用修改后的变量(大陆#2)和/或将分析限制在准确性≥50%的名称时。原籍国或种族的错误分类风险较高,但随着大陆起源的变化(如使用修改后的变量(国家#2)和/或子样本),风险会降低。