Suppr超能文献

基于多参数 MRI 的融合放射组学预测胶质母细胞瘤中端粒酶逆转录酶(TERT)启动子突变和无进展生存期:一项多中心研究。

Multiparametric MRI-based fusion radiomics for predicting telomerase reverse transcriptase (TERT) promoter mutations and progression-free survival in glioblastoma: a multicentre study.

机构信息

The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.

Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, #106 Zhongshan 2Nd Road, Guangzhou, 510080, China.

出版信息

Neuroradiology. 2024 Jan;66(1):81-92. doi: 10.1007/s00234-023-03245-3. Epub 2023 Nov 17.

Abstract

PURPOSE

This study evaluated the performance of multiparametric magnetic resonance imaging (MRI)-based fusion radiomics models (MMFRs) to predict telomerase reverse transcriptase (TERT) promoter mutation status and progression-free survival (PFS) in glioblastoma patients.

METHODS

We retrospectively analysed 208 glioblastoma patients from two hospitals. Quantitative imaging features were extracted from each patient's T1-weighted, T1-weighted contrast-enhanced, and T2-weighted preoperative images. Using a coarse-to-fine feature selection strategy, four radiomics signature models were constructed based on the three MRI sequences and their combination for TERT promoter mutation status and PFS; model performance was subsequently evaluated. Subgroup analyses were performed by the radiomics signature of TERT promoter mutation status and PFS to distinguish patients who could benefit from prolonged temozolomide chemotherapy cycles.

RESULTS

TERT promoter mutation status was best predicted by MMFR, with an area under the curve (AUC) of 0.816 and 0.812 for the training and internal validation sets, respectively. The external test set also achieved stable and optimal prediction results (AUC, 0.823). MMFR better predicted patient PFS compared with the single-sequence radiomics signature in the test set (C-index, 0.643 vs 0.561 vs 0.620 vs 0.628). Subgroup analyses showed that more than six cycles of postoperative temozolomide chemotherapy were associated with improved PFS for patients in class 2 (high TERT promoter mutation and high survival rates; HR, 0.222; 95% CI, 0.054 - 0.923; p = 0.025).

CONCLUSION

MMFR is an effective method to predict TERT promoter mutations and PFS in patients with glioblastoma. Moreover, subgroup analysis could differentiate patients who may benefit from prolonged TMZ chemotherapy cycles.

摘要

目的

本研究评估了基于多参数磁共振成像(MRI)融合放射组学模型(MMFR)预测胶质母细胞瘤患者端粒酶逆转录酶(TERT)启动子突变状态和无进展生存期(PFS)的性能。

方法

我们回顾性分析了来自两家医院的 208 例胶质母细胞瘤患者。从每位患者的 T1 加权、T1 增强加权和 T2 加权术前图像中提取定量成像特征。使用从粗到精的特征选择策略,根据三个 MRI 序列及其组合构建了四个放射组学特征模型,用于预测 TERT 启动子突变状态和 PFS;随后评估了模型性能。通过 TERT 启动子突变状态和 PFS 的放射组学特征进行亚组分析,以区分哪些患者可能从延长替莫唑胺化疗周期中获益。

结果

MMFR 对 TERT 启动子突变状态的预测效果最佳,在训练集和内部验证集中的 AUC 分别为 0.816 和 0.812。外部测试集也取得了稳定且最佳的预测结果(AUC 为 0.823)。与测试集中的单序列放射组学特征相比,MMFR 能更好地预测患者的 PFS(C 指数分别为 0.643、0.561、0.620 和 0.628)。亚组分析显示,对于 2 类(高 TERT 启动子突变和高生存率)患者,术后接受超过 6 个周期的替莫唑胺化疗与 PFS 改善相关(HR 为 0.222;95%CI,0.054-0.923;p=0.025)。

结论

MMFR 是一种预测胶质母细胞瘤患者 TERT 启动子突变和 PFS 的有效方法。此外,亚组分析可以区分可能从延长 TMZ 化疗周期中获益的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验