Suppr超能文献

转录因子Efg1相分离中朊病毒样结构域的结构和位置特异性相互作用

Structure and position-specific interactions of prion-like domains in transcription factor Efg1 phase separation.

作者信息

Wang Szu-Huan, Zheng Tongyin, Fawzi Nicolas L

机构信息

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence Rhode Island, 02912, USA.

These authors contributed equally to this work.

出版信息

bioRxiv. 2023 Nov 9:2023.11.09.566450. doi: 10.1101/2023.11.09.566450.

Abstract

, a prominent member of the human microbiome, can make an opportunistic switch from commensal coexistence to pathogenicity accompanied by an epigenetic shift between the white and opaque cell states. This transcriptional switch is under precise regulation by a set of transcription factors (TFs), with Enhanced Filamentous Growth Protein 1 (Efg1) playing a central role. Previous research has emphasized the importance of Egf1's prion-like domain (PrLD) and the protein's ability to undergo phase separation for the white-to-opaque transition of . However, the underlying molecular mechanisms of Efg1 phase separation have remained underexplored. In this study, we delved into the biophysical basis of Efg1 phase separation, revealing the significant contribution of both N-terminal (N) and C-terminal (C) PrLDs. Through NMR structural analysis, we found that Efg1 N-PrLD and C-PrLD are mostly disordered though have prominent partial α-helical secondary structures in both domains. NMR titration experiments suggest that the partially helical structures in N-PrLD act as hubs for self-interaction as well as Efg1 interaction with RNA. Using condensed-phase NMR spectroscopy, we uncovered diverse amino acid interactions underlying Efg1 phase separation. Particularly, we highlight the indispensable role of tyrosine residues within the transient α-helical structures of PrLDs particularly in the N-PrLD compared to the C-PrLD in stabilizing phase separation. Our study provides evidence that the transient α-helical structure is present in the phase separated state and highlights the particular importance of aromatic residues within these structures for phase separation. Together, these results enhance the understanding of TF interactions that lead to virulence and provide a crucial foundation for potential antifungal therapies targeting the transcriptional switch.

摘要

作为人类微生物组的重要成员,(某种微生物)可从共生状态向致病性进行机会性转变,同时伴随着白色和不透明细胞状态之间的表观遗传转变。这种转录开关受到一组转录因子(TFs)的精确调控,其中增强丝状生长蛋白1(Efg1)发挥着核心作用。先前的研究强调了Egf1的朊病毒样结构域(PrLD)以及该蛋白发生相分离的能力对于(某种微生物)从白色到不透明转变的重要性。然而,Efg1相分离的潜在分子机制仍未得到充分探索。在本研究中,我们深入研究了Efg1相分离的生物物理基础,揭示了N端(N)和C端(C)PrLDs的重要贡献。通过核磁共振结构分析,我们发现Efg1 N-PrLD和C-PrLD大多是无序的,尽管在两个结构域中都有突出的部分α-螺旋二级结构。核磁共振滴定实验表明,N-PrLD中的部分螺旋结构既是自我相互作用的枢纽,也是Efg1与RNA相互作用的枢纽。使用凝聚相核磁共振光谱,我们发现了Efg1相分离背后的多种氨基酸相互作用。特别是,我们强调了PrLDs的瞬时α-螺旋结构中的酪氨酸残基,尤其是与C-PrLD相比,N-PrLD中的酪氨酸残基在稳定相分离中的不可或缺的作用。我们的研究提供了证据,表明瞬时α-螺旋结构存在于相分离状态,并强调了这些结构中芳香族残基对相分离的特殊重要性。总之,这些结果加深了对导致毒力的TF相互作用的理解,并为针对转录开关的潜在抗真菌疗法提供了关键基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c91d/10659382/6a1fe219899a/nihpp-2023.11.09.566450v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验