Suppr超能文献

六种法医样本的宏转录组学特征及其在体液/组织鉴定中的潜在应用:一项初步研究。

Metatranscriptomic characterization of six types of forensic samples and its potential application to body fluid/tissue identification: A pilot study.

作者信息

Liu Zhiyong, Liu Jiajun, Geng Jiaojiao, Wu Enlin, Zhu Jianzhang, Cong Bin, Wu Riga, Sun Hongyu

机构信息

Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.

Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China.

出版信息

Forensic Sci Int Genet. 2024 Jan;68:102978. doi: 10.1016/j.fsigen.2023.102978. Epub 2023 Nov 17.

Abstract

Microorganisms are potential markers for identifying body fluids (venous and menstrual blood, semen, saliva, and vaginal secretion) and skin tissue in forensic genetics. Existing published studies have mainly focused on investigating microbial DNA by 16 S rRNA gene sequencing or metagenome shotgun sequencing. We rarely find microbial RNA level investigations on common forensic body fluid/tissue. Therefore, the use of metatranscriptomics to characterize common forensic body fluids/tissue has not been explored in detail, and the potential application of metatranscriptomics in forensic science remains unknown. Here, we performed 30 metatranscriptome analyses on six types of common forensic sample from healthy volunteers by massively parallel sequencing. After quality control and host RNA filtering, a total of 345,300 unigenes were assembled from clean reads. Four kingdoms, 137 phyla, 267 classes, 488 orders, 985 families, 2052 genera, and 4690 species were annotated across all samples. Alpha- and beta-diversity and differential analysis were also performed. As a result, the saliva and skin groups demonstrated high alpha diversity (Simpson index), while the venous blood group exhibited the lowest diversity despite a high Chao1 index. Specifically, we discussed potential microorganism contamination and the "core microbiome," which may be of special interest to forensic researchers. In addition, we implemented and evaluated artificial neural network (ANN), random forest (RF), and support vector machine (SVM) models for forensic body fluid/tissue identification (BFID) using genus- and species-level metatranscriptome profiles. The ANN and RF prediction models discriminated six forensic body fluids/tissue, demonstrating that the microbial RNA-based method could be applied to BFID. Unlike metagenomic research, metatranscriptomic analysis can provide information about active microbial communities; thus, it may have greater potential to become a powerful tool in forensic science for microbial-based individual identification. This study represents the first attempt to explore the application potential of metatranscriptome profiles in forensic science. Our findings help deepen our understanding of the microorganism community structure at the RNA level and are beneficial for other forensic applications of metatranscriptomics.

摘要

微生物是法医遗传学中用于识别体液(静脉血和月经血、精液、唾液及阴道分泌物)和皮肤组织的潜在标志物。已发表的现有研究主要集中于通过16S rRNA基因测序或宏基因组鸟枪法测序来研究微生物DNA。我们很少能找到关于常见法医体液/组织的微生物RNA水平的研究。因此,尚未详细探索使用宏转录组学来表征常见法医体液/组织,宏转录组学在法医学中的潜在应用仍然未知。在此,我们通过大规模平行测序对来自健康志愿者的六种常见法医样本进行了30次宏转录组分析。经过质量控制和宿主RNA过滤后,从干净读段中组装出了总共345,300个单基因。在所有样本中注释出了四个界、137个门、267个纲、488个目、985个科、2052个属和4690个物种。还进行了α-和β-多样性及差异分析。结果显示,唾液和皮肤组表现出较高的α多样性(辛普森指数),而静脉血组尽管Chao1指数较高,但多样性最低。具体而言,我们讨论了潜在的微生物污染和“核心微生物组”,这可能是法医研究人员特别感兴趣的。此外,我们使用属和种水平的宏转录组图谱实施并评估了用于法医体液/组织识别(BFID)的人工神经网络(ANN)、随机森林(RF)和支持向量机(SVM)模型。ANN和RF预测模型能够区分六种法医体液/组织,表明基于微生物RNA的方法可应用于BFID。与宏基因组研究不同,宏转录组分析可以提供有关活跃微生物群落的信息;因此,它可能更有潜力成为法医学中基于微生物的个体识别的有力工具。本研究是探索宏转录组图谱在法医学中应用潜力的首次尝试。我们的发现有助于加深我们对RNA水平微生物群落结构的理解,并有利于宏转录组学在其他法医应用中的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验