Suppr超能文献

通过红外光激活光谱法观察钙钛矿太阳能电池中捕获载流子的原位动力学。

Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy.

作者信息

Pan Jiaxin, Chen Ziming, Zhang Tiankai, Hu Beier, Ning Haoqing, Meng Zhu, Su Ziyu, Nodari Davide, Xu Weidong, Min Ganghong, Chen Mengyun, Liu Xianjie, Gasparini Nicola, Haque Saif A, Barnes Piers R F, Gao Feng, Bakulin Artem A

机构信息

Department of Chemistry and Centre for Processible Electronics, Imperial College London, London, W12 0BZ, UK.

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden.

出版信息

Nat Commun. 2023 Dec 4;14(1):8000. doi: 10.1038/s41467-023-43852-5.

Abstract

Conventional spectroscopies are not sufficiently selective to comprehensively understand the behaviour of trapped carriers in perovskite solar cells, particularly under their working conditions. Here we use infrared optical activation spectroscopy (i.e., pump-push-photocurrent), to observe the properties and real-time dynamics of trapped carriers within operando perovskite solar cells. We compare behaviour differences of trapped holes in pristine and surface-passivated FACsPbI devices using a combination of quasi-steady-state and nanosecond time-resolved pump-push-photocurrent, as well as kinetic and drift-diffusion models. We find a two-step trap-filling process: the rapid filling (10 ns) of low-density traps in the bulk of perovskite, followed by the slower filling (100 ns) of high-density traps at the perovskite/hole transport material interface. Surface passivation by n-octylammonium iodide dramatically reduces the number of trap states (50 times), improving the device performance substantially. Moreover, the activation energy (280 meV) of the dominant hole traps remains similar with and without surface passivation.

摘要

传统光谱技术的选择性不足,无法全面了解钙钛矿太阳能电池中捕获载流子的行为,尤其是在其工作条件下。在此,我们使用红外光激活光谱法(即泵浦-推挽-光电流法),来观察工作中的钙钛矿太阳能电池内捕获载流子的性质和实时动力学。我们结合准稳态和纳秒时间分辨泵浦-推挽-光电流法以及动力学和漂移扩散模型,比较了原始的和表面钝化的FACsPbI器件中捕获空穴的行为差异。我们发现了一个两步陷阱填充过程:钙钛矿主体中低密度陷阱的快速填充(10 ns),随后是钙钛矿/空穴传输材料界面处高密度陷阱的较慢填充(100 ns)。正辛基碘化铵进行的表面钝化显著减少了陷阱态数量(约50倍),大幅提高了器件性能。此外,有无表面钝化时,主要空穴陷阱的激活能(~280 meV)保持相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1784/10694143/135a072f2e6e/41467_2023_43852_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验