Suppr超能文献

有效的细胞膜张力可保护红细胞免受疟疾侵袭。

Effective cell membrane tension protects red blood cells against malaria invasion.

机构信息

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS Comput Biol. 2023 Dec 4;19(12):e1011694. doi: 10.1371/journal.pcbi.1011694. eCollection 2023 Dec.

Abstract

A critical step in how malaria parasites invade red blood cells (RBCs) is the wrapping of the membrane around the egg-shaped merozoites. Recent experiments have revealed that RBCs can be protected from malaria invasion by high membrane tension. While cellular and biochemical aspects of parasite actomyosin motor forces during the malaria invasion have been well studied, the important role of the biophysical forces induced by the RBC membrane-cytoskeleton composite has not yet been fully understood. In this study, we use a theoretical model for lipid bilayer mechanics, cytoskeleton deformation, and membrane-merozoite interactions to systematically investigate the influence of effective RBC membrane tension, which includes contributions from the lipid bilayer tension, spontaneous tension, interfacial tension, and the resistance of cytoskeleton against shear deformation on the progression of membrane wrapping during the process of malaria invasion. Our model reveals that this effective membrane tension creates a wrapping energy barrier for a complete merozoite entry. We calculate the tension threshold required to impede the malaria invasion. We find that the tension threshold is a nonmonotonic function of spontaneous tension and undergoes a sharp transition from large to small values as the magnitude of interfacial tension increases. We also predict that the physical properties of the RBC cytoskeleton layer-particularly the resting length of the cytoskeleton-play key roles in specifying the degree of the membrane wrapping. We also found that the shear energy of cytoskeleton deformation diverges at the full wrapping state, suggesting the local disassembly of the cytoskeleton is required to complete the merozoite entry. Additionally, using our theoretical framework, we predict the landscape of myosin-mediated forces and the physical properties of the RBC membrane in regulating successful malaria invasion. Our findings on the crucial role of RBC membrane tension in inhibiting malaria invasion can have implications for developing novel antimalarial therapeutic or vaccine-based strategies.

摘要

疟原虫入侵红细胞(RBC)的一个关键步骤是将膜包裹在卵状的裂殖子周围。最近的实验表明,高膜张力可以保护 RBC 免受疟疾入侵。虽然寄生虫肌球蛋白马达力在疟疾入侵过程中的细胞和生化方面已经得到了很好的研究,但 RBC 膜-细胞骨架复合物所诱导的重要生物物理力的作用尚未得到充分理解。在这项研究中,我们使用一个脂质双层力学、细胞骨架变形和膜-裂殖子相互作用的理论模型,系统地研究了有效 RBC 膜张力(包括脂质双层张力、自发张力、界面张力和细胞骨架抵抗剪切变形的阻力)对疟原虫入侵过程中膜包裹进展的影响。我们的模型表明,这种有效膜张力为裂殖子的完全进入创造了一个包裹能量障碍。我们计算了阻止疟疾入侵所需的张力阈值。我们发现,张力阈值是自发张力的非单调函数,随着界面张力的增加,它会从大到小发生急剧转变。我们还预测,RBC 细胞骨架层的物理性质——特别是细胞骨架的静息长度——在指定膜包裹程度方面起着关键作用。我们还发现,细胞骨架变形的剪切能在完全包裹状态下发散,这表明需要局部拆卸细胞骨架才能完成裂殖子进入。此外,我们使用理论框架预测了肌球蛋白介导的力的景观和 RBC 膜的物理性质在调节成功的疟疾入侵中的作用。我们关于 RBC 膜张力在抑制疟疾入侵中的关键作用的发现,可以为开发新的抗疟治疗或疫苗策略提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead2/10721198/a631544b2bc7/pcbi.1011694.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验