Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065.
HHMI, The Rockefeller University, New York, NY 10065.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2317367120. doi: 10.1073/pnas.2317367120. Epub 2023 Dec 14.
Vaccination will likely be a key component of strategies to curtail or prevent future sarbecovirus pandemics and to reduce the prevalence of infection and disease by future SARS-CoV-2 variants. A "pan-sarbecovirus" vaccine, that provides maximum possible mitigation of human disease, should elicit neutralizing antibodies with maximum possible breadth. By positioning multiple different receptor binding domain (RBD) antigens in close proximity on a single immunogen, it is postulated that cross-reactive B cell receptors might be selectively engaged. Heteromultimeric vaccines could therefore elicit individual antibodies that neutralize a broad range of viral species. Here, we use model systems to investigate the ability of multimeric sarbecovirus RBD immunogens to expand cross-reactive B cells and elicit broadly reactive antibodies. Homomultimeric RBD immunogens generated higher serum neutralizing antibody titers than the equivalent monomeric immunogens, while heteromultimeric RBD immunogens generated neutralizing antibodies recognizing each RBD component. Moreover, RBD heterodimers elicited a greater fraction of cross-reactive germinal center B cells and cross-reactive RBD binding antibodies than did homodimers. However, when serum antibodies from RBD heterodimer-immunized mice were depleted using one RBD component, neutralization activity against the homologous viral pseudotype was removed, but neutralization activity against pseudotypes corresponding to the other RBD component was unaffected. Overall, simply combining divergent RBDs in a single immunogen generates largely separate sets of individual RBD-specific neutralizing serum antibodies that are mostly incapable of neutralizing viruses that diverge from the immunogen components.
疫苗接种很可能是遏制或预防未来沙贝科病毒大流行以及减少未来 SARS-CoV-2 变异体感染和疾病流行的策略的关键组成部分。一种“泛沙贝科病毒”疫苗,最大限度地减轻人类疾病,应该引发具有最大可能广度的中和抗体。通过将多个不同的受体结合域 (RBD) 抗原在单个免疫原上近距离定位,推测可能会选择性地结合交叉反应性 B 细胞受体。因此,异源多聚体疫苗可以引发能够中和广泛病毒物种的个体抗体。在这里,我们使用模型系统来研究多聚体沙贝科病毒 RBD 免疫原扩展交叉反应性 B 细胞和引发广泛反应性抗体的能力。同源多聚体 RBD 免疫原产生的血清中和抗体滴度高于等效的单体免疫原,而异源多聚体 RBD 免疫原产生的中和抗体可识别每个 RBD 成分。此外,RBD 二聚体比同源二聚体引发更多的交叉反应性生发中心 B 细胞和交叉反应性 RBD 结合抗体。然而,当用一种 RBD 成分耗尽 RBD 异源二聚体免疫小鼠的血清抗体时,对同源病毒假型的中和活性被消除,但对对应于其他 RBD 成分的假型的中和活性不受影响。总体而言,只需将不同的 RBD 组合在单个免疫原中,就会产生大量单独的 RBD 特异性中和血清抗体,这些抗体大多不能中和与免疫原成分不同的病毒。