Suppr超能文献

通过富集培养与多组学分析,探索与质膜相关的新型海洋细菌代谢邻苯二甲酸二丁酯和邻苯二甲酸二(2-乙基己基)酯的潜力。

Exploring the potential of a new marine bacterium associated with plastisphere to metabolize dibutyl phthalate and bis(2-ethylhexyl) phthalate by enrichment cultures combined with multi-omics analysis.

机构信息

School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China.

School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.

出版信息

Environ Pollut. 2024 Feb 1;342:123146. doi: 10.1016/j.envpol.2023.123146. Epub 2023 Dec 13.

Abstract

Phthalic acid esters (PAEs) plasticizers are virulent endocrine disruptors that are mixed into plastics while fabricating and can filter out once they release into the surrounding environments. Plastic surfaces serve as new habitats for microorganisms, referred to as 'plastisphere'. Previous metagenomic investigations of the 'plastisphere' indicated that marine plastic surfaces may harbor microbes that degrade PAEs plasticizers. To our knowledge, the potential of microorganisms in the marine 'plastisphere' to metabolize PAEs is poorly understood. In this study, by screening the natural microbial community on plastic debris that had been deployed in situ for up to 20 months, a novel marine bacterium, Microbacterium esteraromaticum DEHP-1, was successfully isolated, which could degrade and mineralize 10-200 mg/L dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP). According to the results of gas chromatography-mass spectrometry (GC-MS) and whole genome mining of strain DEHP-1, we found that strain DEHP-1 may metabolize DBP by successive removal of the ester side chain by esterase 2518 to produce mono-butyl phthalate (MBP) and phthalic acid (PA), whereas the degradation of DEHP may take place by the direct action of monooxygenase 0132 on the fatty acid side chain of the DEHP molecule to produce di-n-hexyl phthalate (DnHP) and DBP, and then the subsequent hydrolysis of DBP by de-esterification to PA and finally into the tricarboxylic acid (TCA) cycle. Non-targeted metabolomics results showed that intracellular degradation of PAEs did not happen. However, exposure to PAEs was found to significantly affect pathways such as arginine and proline, riboflavin, glutathione and lysine degradation. Therefore, the intracellular metabolic behavior of strain DEHP-1 exposed to PAEs was proposed for the first time. This study sheds light on the metabolic capacity and strategies of bacteria in the marine 'plastisphere' to effectively degrade PAEs and highlights the importance of marine microbes in mitigating plastic poisonousness.

摘要

邻苯二甲酸酯(PAEs)增塑剂是一种烈性内分泌干扰物,在制造塑料时混入其中,一旦释放到周围环境中就会滤出。塑料表面成为微生物的新栖息地,被称为“塑料体”。先前对“塑料体”的宏基因组研究表明,海洋塑料表面可能存在能够降解 PAEs 增塑剂的微生物。据我们所知,海洋“塑料体”中微生物代谢 PAEs 的潜力还知之甚少。在这项研究中,通过筛选在现场部署长达 20 个月的塑料碎片上的天然微生物群落,成功分离出一种新型海洋细菌,即邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)降解菌 Microbacterium esteraromaticum DEHP-1,该菌能够降解和矿化 10-200mg/L 的邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)。根据 DEHP-1 菌株的气相色谱-质谱(GC-MS)和全基因组挖掘结果,我们发现 DEHP-1 菌株可能通过酯酶 2518 连续去除酯侧链来代谢 DBP,生成单丁基邻苯二甲酸(MBP)和邻苯二甲酸(PA),而 DEHP 的降解可能是通过单加氧酶 0132 直接作用于 DEHP 分子的脂肪酸侧链生成二正己基邻苯二甲酸(DnHP)和 DBP,然后通过去酯化作用将 DBP 水解成 PA,最终进入三羧酸(TCA)循环。非靶向代谢组学结果表明,PAEs 不会在细胞内降解。然而,发现暴露于 PAEs 会显著影响精氨酸和脯氨酸、核黄素、谷胱甘肽和赖氨酸降解等途径。因此,首次提出了 DEHP-1 菌株暴露于 PAEs 时的细胞内代谢行为。这项研究揭示了海洋“塑料体”中细菌有效降解 PAEs 的代谢能力和策略,并强调了海洋微生物在减轻塑料毒性方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验