Suppr超能文献

人工智能与机器学习在癌症相关疼痛中的应用:一项系统综述

Artificial Intelligence and Machine Learning in Cancer Related Pain: A Systematic Review.

作者信息

Salama Vivian, Godinich Brandon, Geng Yimin, Humbert-Vidan Laia, Maule Laura, Wahid Kareem A, Naser Mohamed A, He Renjie, Mohamed Abdallah S R, Fuller Clifton D, Moreno Amy C

出版信息

medRxiv. 2023 Dec 8:2023.12.06.23299610. doi: 10.1101/2023.12.06.23299610.

Abstract

BACKGROUND/OBJECTIVE: Pain is a challenging multifaceted symptom reported by most cancer patients, resulting in a substantial burden on both patients and healthcare systems. This systematic review aims to explore applications of artificial intelligence/machine learning (AI/ML) in predicting pain-related outcomes and supporting decision-making processes in pain management in cancer.

METHODS

A comprehensive search of Ovid MEDLINE, EMBASE and Web of Science databases was conducted using terms including "Cancer", "Pain", "Pain Management", "Analgesics", "Opioids", "Artificial Intelligence", "Machine Learning", "Deep Learning", and "Neural Networks" published up to September 7, 2023. The screening process was performed using the Covidence screening tool. Only original studies conducted in human cohorts were included. AI/ML models, their validation and performance and adherence to TRIPOD guidelines were summarized from the final included studies.

RESULTS

This systematic review included 44 studies from 2006-2023. Most studies were prospective and uni-institutional. There was an increase in the trend of AI/ML studies in cancer pain in the last 4 years. Nineteen studies used AI/ML for classifying cancer patients' pain development after cancer therapy, with median AUC 0.80 (range 0.76-0.94). Eighteen studies focused on cancer pain research with median AUC 0.86 (range 0.50-0.99), and 7 focused on applying AI/ML for cancer pain management decisions with median AUC 0.71 (range 0.47-0.89). Multiple ML models were investigated with. median AUC across all models in all studies (0.77). Random forest models demonstrated the highest performance (median AUC 0.81), lasso models had the highest median sensitivity (1), while Support Vector Machine had the highest median specificity (0.74). Overall adherence of included studies to TRIPOD guidelines was 70.7%. Lack of external validation (14%) and clinical application (23%) of most included studies was detected. Reporting of model calibration was also missing in the majority of studies (5%).

CONCLUSION

Implementation of various novel AI/ML tools promises significant advances in the classification, risk stratification, and management decisions for cancer pain. These advanced tools will integrate big health-related data for personalized pain management in cancer patients. Further research focusing on model calibration and rigorous external clinical validation in real healthcare settings is imperative for ensuring its practical and reliable application in clinical practice.

摘要

背景/目的:疼痛是大多数癌症患者报告的具有挑战性的多方面症状,给患者和医疗系统都带来了沉重负担。本系统评价旨在探讨人工智能/机器学习(AI/ML)在预测癌症疼痛相关结局及支持癌症疼痛管理决策过程中的应用。

方法

使用包括“癌症”“疼痛”“疼痛管理”“镇痛药”“阿片类药物”“人工智能”“机器学习”“深度学习”和“神经网络”等术语,对截至2023年9月7日发表在Ovid MEDLINE、EMBASE和Web of Science数据库上的文献进行全面检索。使用Covidence筛选工具进行筛选过程。仅纳入在人类队列中进行的原始研究。从最终纳入的研究中总结AI/ML模型、其验证和性能以及对TRIPOD指南的遵循情况。

结果

本系统评价纳入了2006年至2023年的44项研究。大多数研究是前瞻性的且为单机构研究。在过去4年中,癌症疼痛方面的AI/ML研究呈增加趋势。19项研究使用AI/ML对癌症治疗后癌症患者的疼痛发展进行分类,中位AUC为0.80(范围0.76 - 0.94)。18项研究专注于癌症疼痛研究,中位AUC为0.86(范围0.50 - 0.99),7项研究专注于将AI/ML应用于癌症疼痛管理决策,中位AUC为0.71(范围0.47 - 0.89)。研究了多种ML模型,所有研究中所有模型的中位AUC为0.77。随机森林模型表现最佳(中位AUC为0.81),套索模型的中位敏感性最高(为1),而支持向量机的中位特异性最高(为0.74)。纳入研究对TRIPOD指南的总体遵循率为70.7%。发现大多数纳入研究缺乏外部验证(14%)和临床应用(23%)。大多数研究(5%)也未报告模型校准情况。

结论

各种新型AI/ML工具的实施有望在癌症疼痛的分类、风险分层和管理决策方面取得重大进展。这些先进工具将整合大量与健康相关的数据,用于癌症患者的个性化疼痛管理。为确保其在临床实践中的实际和可靠应用,迫切需要进一步开展侧重于模型校准和在实际医疗环境中进行严格外部临床验证的研究。

相似文献

1
Artificial Intelligence and Machine Learning in Cancer Related Pain: A Systematic Review.
medRxiv. 2023 Dec 8:2023.12.06.23299610. doi: 10.1101/2023.12.06.23299610.
2
Artificial Intelligence and Machine Learning in Cancer Pain: A Systematic Review.
J Pain Symptom Manage. 2024 Dec;68(6):e462-e490. doi: 10.1016/j.jpainsymman.2024.07.025. Epub 2024 Aug 3.
3
Artificial intelligence in hospital infection prevention: an integrative review.
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
4
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.
6
Embryo selection through artificial intelligence versus embryologists: a systematic review.
Hum Reprod Open. 2023 Aug 15;2023(3):hoad031. doi: 10.1093/hropen/hoad031. eCollection 2023.
7
Artificial intelligence in the prediction of venous thromboembolism: A systematic review and pooled analysis.
Eur J Haematol. 2023 Dec;111(6):951-962. doi: 10.1111/ejh.14110. Epub 2023 Oct 4.
10
Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews.
Adv Ther. 2023 Aug;40(8):3360-3380. doi: 10.1007/s12325-023-02527-9. Epub 2023 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验