Suppr超能文献

深度学习在溃疡性结肠炎疾病严重程度诊断与评估中的应用

Application of deep learning in the diagnosis and evaluation of ulcerative colitis disease severity.

作者信息

Jiang Xinyi, Luo Xudong, Nan Qiong, Ye Yan, Miao Yinglei, Miao Jiarong

机构信息

Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.

Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.

出版信息

Therap Adv Gastroenterol. 2023 Dec 22;16:17562848231215579. doi: 10.1177/17562848231215579. eCollection 2023.

Abstract

BACKGROUND

Achieving endoscopic and histological remission is a critical treatment objective in ulcerative colitis (UC). Nevertheless, interobserver variability can significantly impact overall assessment performance.

OBJECTIVES

We aimed to develop a deep learning algorithm for the real-time and objective evaluation of endoscopic disease activity and prediction of histological remission in UC.

DESIGN

This is a retrospective diagnostic study.

METHODS

Two convolutional neural network (CNN) models were constructed and trained using 12,257 endoscopic images and biopsy results sourced from 1124 UC patients who underwent colonoscopy at a single center from January 2018 to December 2022. Mayo Endoscopy Subscore (MES) and UC Endoscopic Index of Severity Score (UCEIS) assessments were conducted by two experienced and independent reviewers. Model performance was evaluated in terms of accuracy, sensitivity, and positive predictive value. The output of the CNN models was also compared with the corresponding histological results to assess histological remission prediction performance.

RESULTS

The MES-CNN model achieved 97.04% accuracy in diagnosing endoscopic remission of UC, while the MES-CNN and UCEIS-CNN models achieved 90.15% and 85.29% accuracy, respectively, in evaluating endoscopic severity of UC. For predicting histological remission, the CNN models achieved accuracy and kappa values of 91.28% and 0.826, respectively, attaining higher accuracy than human endoscopists (87.69%).

CONCLUSION

The proposed artificial intelligence model, based on MES and UCEIS evaluations from expert gastroenterologists, offered precise assessment of inflammation in UC endoscopic images and reliably predicted histological remission.

摘要

背景

实现内镜和组织学缓解是溃疡性结肠炎(UC)治疗的关键目标。然而,观察者间的差异会显著影响整体评估性能。

目的

我们旨在开发一种深度学习算法,用于实时、客观地评估UC的内镜疾病活动度并预测组织学缓解情况。

设计

这是一项回顾性诊断研究。

方法

构建并训练了两个卷积神经网络(CNN)模型,使用了2018年1月至2022年12月在单一中心接受结肠镜检查的1124例UC患者的12257张内镜图像和活检结果。由两名经验丰富且独立的审阅者进行梅奥内镜亚评分(MES)和UC内镜严重程度指数评分(UCEIS)评估。从准确性、敏感性和阳性预测值方面评估模型性能。还将CNN模型的输出与相应的组织学结果进行比较,以评估组织学缓解预测性能。

结果

MES-CNN模型在诊断UC内镜缓解方面的准确率达到97.04%;而在评估UC内镜严重程度时,MES-CNN和UCEIS-CNN模型的准确率分别达到90.15%和85.29%。对于预测组织学缓解,CNN模型的准确率和kappa值分别为91.28%和0.826,比人类内镜医师(87.69%)的准确率更高。

结论

基于胃肠病学专家的MES和UCEIS评估所提出的人工智能模型,能够精确评估UC内镜图像中的炎症情况,并可靠地预测组织学缓解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ecd/10748675/d34b94ab3bd0/10.1177_17562848231215579-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验